Loading…
Error patterns in MLC NAND flash memory: Measurement, characterization, and analysis
As NAND flash memory manufacturers scale down to smaller process technology nodes and store more bits per cell, reliability and endurance of flash memory reduce. Wear-leveling and error correction coding can improve both reliability and endurance, but finding effective algorithms requires a strong u...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | eng ; jpn |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | As NAND flash memory manufacturers scale down to smaller process technology nodes and store more bits per cell, reliability and endurance of flash memory reduce. Wear-leveling and error correction coding can improve both reliability and endurance, but finding effective algorithms requires a strong understanding of flash memory error patterns. To enable such understanding, we have designed and implemented a framework for fast and accurate characterization of flash memory throughout its lifetime. This paper examines the complex flash errors that occur at 30-40nm flash technologies. We demonstrate distinct error patterns, such as cycle-dependency, location-dependency and value-dependency, for various types of flash operations. We analyze the discovered error patterns and explain why they exist from a circuit and device standpoint. Our hope is that the understanding developed from this characterization serves as a building block for new error tolerance algorithms for flash memory. |
---|---|
ISSN: | 1530-1591 1558-1101 |
DOI: | 10.1109/DATE.2012.6176524 |