Loading…
Investigation on mammographic image compression and analysis using multiwavelets and neural network
In digital mammography, the resulting electronic image is very large in size. Hence, the size poses a big challenge to the transmission, storage and manipulation of images. Microcalcification is one of the earliest sign of breast cancer and it appears in small size, low contrast radiopacites in high...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 21 |
container_issue | |
container_start_page | 17 |
container_title | |
container_volume | |
creator | Ragupathy, U. S. Kumar, A. S. |
description | In digital mammography, the resulting electronic image is very large in size. Hence, the size poses a big challenge to the transmission, storage and manipulation of images. Microcalcification is one of the earliest sign of breast cancer and it appears in small size, low contrast radiopacites in high frequency spectrum of mammographic image. Scalar wavelets excel multiwavelets in terms of Peak Signal - to Noise Ratio (PSNR), but fail to capture high frequency information. Multiwavelet preserves high frequency information. This paper proposes multiwavelet based mammographic image compression, and microcalcification analysis in compressed reconstructed images against original images using multiwavelets and neural networks. For a set of four mammography images, the proposed balanced multiwavelet based compression method achieves an average PSNR of 9.064 dB greater than the existing compression scheme. It also details the classification results obtained through the multiwavelet based scheme in comparison with the existing scalar wavelet based scheme. For a testing sample of 30 images, the proposed classification scheme outperforms the scalar wavelet based classification by sensitivity of 2.23% and specificity of 3.4% for original (uncompressed) images. Also it increases the sensitivity by 2.72% and specificity by 8.4% for compressed reconstructed images. This increase in sensitivity and specificity reveals a better performance of the proposed detection scheme. |
doi_str_mv | 10.1109/ICoBE.2012.6178947 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6178947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6178947</ieee_id><sourcerecordid>6178947</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-7c8ddd90757cfd0b348474da13987ec4b45c70f6e39b2ea6649d2fafd6c8bf1c3</originalsourceid><addsrcrecordid>eNotkNFKxDAQRSMiqGt_QF_6A61JmzbJo5Z1LSz4su9LmkxqtGlLk-6yf2_VDjMcBi6Xy0XokeCUECye62p43aYZJllaEsYFZVcoEowTWjBGBBfiGt2vj8D8FkXef-FlGM44IXdI1f0JfLCtDHbo42WddG5oJzl-WhVbJ1uI1eDGCbz_VcheLye7i7c-nr3t29jNXbBneYIOgv8T9DBPslsQzsP0_YBujOw8RCs36PC2PVTvyf5jV1cv-8QKHBKmuNZaYFYwZTRucsopo1qSXHAGija0UAybEnLRZCDLkgqdGWl0qXhjiMo36Onf1gLAcZyW7NPluNaS_wAaJVn3</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Investigation on mammographic image compression and analysis using multiwavelets and neural network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ragupathy, U. S. ; Kumar, A. S.</creator><creatorcontrib>Ragupathy, U. S. ; Kumar, A. S.</creatorcontrib><description>In digital mammography, the resulting electronic image is very large in size. Hence, the size poses a big challenge to the transmission, storage and manipulation of images. Microcalcification is one of the earliest sign of breast cancer and it appears in small size, low contrast radiopacites in high frequency spectrum of mammographic image. Scalar wavelets excel multiwavelets in terms of Peak Signal - to Noise Ratio (PSNR), but fail to capture high frequency information. Multiwavelet preserves high frequency information. This paper proposes multiwavelet based mammographic image compression, and microcalcification analysis in compressed reconstructed images against original images using multiwavelets and neural networks. For a set of four mammography images, the proposed balanced multiwavelet based compression method achieves an average PSNR of 9.064 dB greater than the existing compression scheme. It also details the classification results obtained through the multiwavelet based scheme in comparison with the existing scalar wavelet based scheme. For a testing sample of 30 images, the proposed classification scheme outperforms the scalar wavelet based classification by sensitivity of 2.23% and specificity of 3.4% for original (uncompressed) images. Also it increases the sensitivity by 2.72% and specificity by 8.4% for compressed reconstructed images. This increase in sensitivity and specificity reveals a better performance of the proposed detection scheme.</description><identifier>ISBN: 1457719908</identifier><identifier>ISBN: 9781457719905</identifier><identifier>EISBN: 9781457719899</identifier><identifier>EISBN: 9781457719912</identifier><identifier>EISBN: 1457719894</identifier><identifier>EISBN: 1457719916</identifier><identifier>DOI: 10.1109/ICoBE.2012.6178947</identifier><language>eng</language><publisher>IEEE</publisher><subject>Feature extraction ; Hospitals ; Image coding ; Image Compression ; Image reconstruction ; Mammography ; Microcalcification ; Multiwavelet ; Neural Network ; Neurons ; PSNR ; Wavelet transforms</subject><ispartof>2012 International Conference on Biomedical Engineering (ICoBE), 2012, p.17-21</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6178947$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6178947$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ragupathy, U. S.</creatorcontrib><creatorcontrib>Kumar, A. S.</creatorcontrib><title>Investigation on mammographic image compression and analysis using multiwavelets and neural network</title><title>2012 International Conference on Biomedical Engineering (ICoBE)</title><addtitle>ICoBE</addtitle><description>In digital mammography, the resulting electronic image is very large in size. Hence, the size poses a big challenge to the transmission, storage and manipulation of images. Microcalcification is one of the earliest sign of breast cancer and it appears in small size, low contrast radiopacites in high frequency spectrum of mammographic image. Scalar wavelets excel multiwavelets in terms of Peak Signal - to Noise Ratio (PSNR), but fail to capture high frequency information. Multiwavelet preserves high frequency information. This paper proposes multiwavelet based mammographic image compression, and microcalcification analysis in compressed reconstructed images against original images using multiwavelets and neural networks. For a set of four mammography images, the proposed balanced multiwavelet based compression method achieves an average PSNR of 9.064 dB greater than the existing compression scheme. It also details the classification results obtained through the multiwavelet based scheme in comparison with the existing scalar wavelet based scheme. For a testing sample of 30 images, the proposed classification scheme outperforms the scalar wavelet based classification by sensitivity of 2.23% and specificity of 3.4% for original (uncompressed) images. Also it increases the sensitivity by 2.72% and specificity by 8.4% for compressed reconstructed images. This increase in sensitivity and specificity reveals a better performance of the proposed detection scheme.</description><subject>Feature extraction</subject><subject>Hospitals</subject><subject>Image coding</subject><subject>Image Compression</subject><subject>Image reconstruction</subject><subject>Mammography</subject><subject>Microcalcification</subject><subject>Multiwavelet</subject><subject>Neural Network</subject><subject>Neurons</subject><subject>PSNR</subject><subject>Wavelet transforms</subject><isbn>1457719908</isbn><isbn>9781457719905</isbn><isbn>9781457719899</isbn><isbn>9781457719912</isbn><isbn>1457719894</isbn><isbn>1457719916</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkNFKxDAQRSMiqGt_QF_6A61JmzbJo5Z1LSz4su9LmkxqtGlLk-6yf2_VDjMcBi6Xy0XokeCUECye62p43aYZJllaEsYFZVcoEowTWjBGBBfiGt2vj8D8FkXef-FlGM44IXdI1f0JfLCtDHbo42WddG5oJzl-WhVbJ1uI1eDGCbz_VcheLye7i7c-nr3t29jNXbBneYIOgv8T9DBPslsQzsP0_YBujOw8RCs36PC2PVTvyf5jV1cv-8QKHBKmuNZaYFYwZTRucsopo1qSXHAGija0UAybEnLRZCDLkgqdGWl0qXhjiMo36Onf1gLAcZyW7NPluNaS_wAaJVn3</recordid><startdate>201202</startdate><enddate>201202</enddate><creator>Ragupathy, U. S.</creator><creator>Kumar, A. S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201202</creationdate><title>Investigation on mammographic image compression and analysis using multiwavelets and neural network</title><author>Ragupathy, U. S. ; Kumar, A. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-7c8ddd90757cfd0b348474da13987ec4b45c70f6e39b2ea6649d2fafd6c8bf1c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Feature extraction</topic><topic>Hospitals</topic><topic>Image coding</topic><topic>Image Compression</topic><topic>Image reconstruction</topic><topic>Mammography</topic><topic>Microcalcification</topic><topic>Multiwavelet</topic><topic>Neural Network</topic><topic>Neurons</topic><topic>PSNR</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Ragupathy, U. S.</creatorcontrib><creatorcontrib>Kumar, A. S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ragupathy, U. S.</au><au>Kumar, A. S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Investigation on mammographic image compression and analysis using multiwavelets and neural network</atitle><btitle>2012 International Conference on Biomedical Engineering (ICoBE)</btitle><stitle>ICoBE</stitle><date>2012-02</date><risdate>2012</risdate><spage>17</spage><epage>21</epage><pages>17-21</pages><isbn>1457719908</isbn><isbn>9781457719905</isbn><eisbn>9781457719899</eisbn><eisbn>9781457719912</eisbn><eisbn>1457719894</eisbn><eisbn>1457719916</eisbn><abstract>In digital mammography, the resulting electronic image is very large in size. Hence, the size poses a big challenge to the transmission, storage and manipulation of images. Microcalcification is one of the earliest sign of breast cancer and it appears in small size, low contrast radiopacites in high frequency spectrum of mammographic image. Scalar wavelets excel multiwavelets in terms of Peak Signal - to Noise Ratio (PSNR), but fail to capture high frequency information. Multiwavelet preserves high frequency information. This paper proposes multiwavelet based mammographic image compression, and microcalcification analysis in compressed reconstructed images against original images using multiwavelets and neural networks. For a set of four mammography images, the proposed balanced multiwavelet based compression method achieves an average PSNR of 9.064 dB greater than the existing compression scheme. It also details the classification results obtained through the multiwavelet based scheme in comparison with the existing scalar wavelet based scheme. For a testing sample of 30 images, the proposed classification scheme outperforms the scalar wavelet based classification by sensitivity of 2.23% and specificity of 3.4% for original (uncompressed) images. Also it increases the sensitivity by 2.72% and specificity by 8.4% for compressed reconstructed images. This increase in sensitivity and specificity reveals a better performance of the proposed detection scheme.</abstract><pub>IEEE</pub><doi>10.1109/ICoBE.2012.6178947</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1457719908 |
ispartof | 2012 International Conference on Biomedical Engineering (ICoBE), 2012, p.17-21 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6178947 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Feature extraction Hospitals Image coding Image Compression Image reconstruction Mammography Microcalcification Multiwavelet Neural Network Neurons PSNR Wavelet transforms |
title | Investigation on mammographic image compression and analysis using multiwavelets and neural network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A47%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Investigation%20on%20mammographic%20image%20compression%20and%20analysis%20using%20multiwavelets%20and%20neural%20network&rft.btitle=2012%20International%20Conference%20on%20Biomedical%20Engineering%20(ICoBE)&rft.au=Ragupathy,%20U.%20S.&rft.date=2012-02&rft.spage=17&rft.epage=21&rft.pages=17-21&rft.isbn=1457719908&rft.isbn_list=9781457719905&rft_id=info:doi/10.1109/ICoBE.2012.6178947&rft.eisbn=9781457719899&rft.eisbn_list=9781457719912&rft.eisbn_list=1457719894&rft.eisbn_list=1457719916&rft_dat=%3Cieee_6IE%3E6178947%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-7c8ddd90757cfd0b348474da13987ec4b45c70f6e39b2ea6649d2fafd6c8bf1c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6178947&rfr_iscdi=true |