Loading…

Investigation on mammographic image compression and analysis using multiwavelets and neural network

In digital mammography, the resulting electronic image is very large in size. Hence, the size poses a big challenge to the transmission, storage and manipulation of images. Microcalcification is one of the earliest sign of breast cancer and it appears in small size, low contrast radiopacites in high...

Full description

Saved in:
Bibliographic Details
Main Authors: Ragupathy, U. S., Kumar, A. S.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 21
container_issue
container_start_page 17
container_title
container_volume
creator Ragupathy, U. S.
Kumar, A. S.
description In digital mammography, the resulting electronic image is very large in size. Hence, the size poses a big challenge to the transmission, storage and manipulation of images. Microcalcification is one of the earliest sign of breast cancer and it appears in small size, low contrast radiopacites in high frequency spectrum of mammographic image. Scalar wavelets excel multiwavelets in terms of Peak Signal - to Noise Ratio (PSNR), but fail to capture high frequency information. Multiwavelet preserves high frequency information. This paper proposes multiwavelet based mammographic image compression, and microcalcification analysis in compressed reconstructed images against original images using multiwavelets and neural networks. For a set of four mammography images, the proposed balanced multiwavelet based compression method achieves an average PSNR of 9.064 dB greater than the existing compression scheme. It also details the classification results obtained through the multiwavelet based scheme in comparison with the existing scalar wavelet based scheme. For a testing sample of 30 images, the proposed classification scheme outperforms the scalar wavelet based classification by sensitivity of 2.23% and specificity of 3.4% for original (uncompressed) images. Also it increases the sensitivity by 2.72% and specificity by 8.4% for compressed reconstructed images. This increase in sensitivity and specificity reveals a better performance of the proposed detection scheme.
doi_str_mv 10.1109/ICoBE.2012.6178947
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6178947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6178947</ieee_id><sourcerecordid>6178947</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-7c8ddd90757cfd0b348474da13987ec4b45c70f6e39b2ea6649d2fafd6c8bf1c3</originalsourceid><addsrcrecordid>eNotkNFKxDAQRSMiqGt_QF_6A61JmzbJo5Z1LSz4su9LmkxqtGlLk-6yf2_VDjMcBi6Xy0XokeCUECye62p43aYZJllaEsYFZVcoEowTWjBGBBfiGt2vj8D8FkXef-FlGM44IXdI1f0JfLCtDHbo42WddG5oJzl-WhVbJ1uI1eDGCbz_VcheLye7i7c-nr3t29jNXbBneYIOgv8T9DBPslsQzsP0_YBujOw8RCs36PC2PVTvyf5jV1cv-8QKHBKmuNZaYFYwZTRucsopo1qSXHAGija0UAybEnLRZCDLkgqdGWl0qXhjiMo36Onf1gLAcZyW7NPluNaS_wAaJVn3</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Investigation on mammographic image compression and analysis using multiwavelets and neural network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ragupathy, U. S. ; Kumar, A. S.</creator><creatorcontrib>Ragupathy, U. S. ; Kumar, A. S.</creatorcontrib><description>In digital mammography, the resulting electronic image is very large in size. Hence, the size poses a big challenge to the transmission, storage and manipulation of images. Microcalcification is one of the earliest sign of breast cancer and it appears in small size, low contrast radiopacites in high frequency spectrum of mammographic image. Scalar wavelets excel multiwavelets in terms of Peak Signal - to Noise Ratio (PSNR), but fail to capture high frequency information. Multiwavelet preserves high frequency information. This paper proposes multiwavelet based mammographic image compression, and microcalcification analysis in compressed reconstructed images against original images using multiwavelets and neural networks. For a set of four mammography images, the proposed balanced multiwavelet based compression method achieves an average PSNR of 9.064 dB greater than the existing compression scheme. It also details the classification results obtained through the multiwavelet based scheme in comparison with the existing scalar wavelet based scheme. For a testing sample of 30 images, the proposed classification scheme outperforms the scalar wavelet based classification by sensitivity of 2.23% and specificity of 3.4% for original (uncompressed) images. Also it increases the sensitivity by 2.72% and specificity by 8.4% for compressed reconstructed images. This increase in sensitivity and specificity reveals a better performance of the proposed detection scheme.</description><identifier>ISBN: 1457719908</identifier><identifier>ISBN: 9781457719905</identifier><identifier>EISBN: 9781457719899</identifier><identifier>EISBN: 9781457719912</identifier><identifier>EISBN: 1457719894</identifier><identifier>EISBN: 1457719916</identifier><identifier>DOI: 10.1109/ICoBE.2012.6178947</identifier><language>eng</language><publisher>IEEE</publisher><subject>Feature extraction ; Hospitals ; Image coding ; Image Compression ; Image reconstruction ; Mammography ; Microcalcification ; Multiwavelet ; Neural Network ; Neurons ; PSNR ; Wavelet transforms</subject><ispartof>2012 International Conference on Biomedical Engineering (ICoBE), 2012, p.17-21</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6178947$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6178947$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ragupathy, U. S.</creatorcontrib><creatorcontrib>Kumar, A. S.</creatorcontrib><title>Investigation on mammographic image compression and analysis using multiwavelets and neural network</title><title>2012 International Conference on Biomedical Engineering (ICoBE)</title><addtitle>ICoBE</addtitle><description>In digital mammography, the resulting electronic image is very large in size. Hence, the size poses a big challenge to the transmission, storage and manipulation of images. Microcalcification is one of the earliest sign of breast cancer and it appears in small size, low contrast radiopacites in high frequency spectrum of mammographic image. Scalar wavelets excel multiwavelets in terms of Peak Signal - to Noise Ratio (PSNR), but fail to capture high frequency information. Multiwavelet preserves high frequency information. This paper proposes multiwavelet based mammographic image compression, and microcalcification analysis in compressed reconstructed images against original images using multiwavelets and neural networks. For a set of four mammography images, the proposed balanced multiwavelet based compression method achieves an average PSNR of 9.064 dB greater than the existing compression scheme. It also details the classification results obtained through the multiwavelet based scheme in comparison with the existing scalar wavelet based scheme. For a testing sample of 30 images, the proposed classification scheme outperforms the scalar wavelet based classification by sensitivity of 2.23% and specificity of 3.4% for original (uncompressed) images. Also it increases the sensitivity by 2.72% and specificity by 8.4% for compressed reconstructed images. This increase in sensitivity and specificity reveals a better performance of the proposed detection scheme.</description><subject>Feature extraction</subject><subject>Hospitals</subject><subject>Image coding</subject><subject>Image Compression</subject><subject>Image reconstruction</subject><subject>Mammography</subject><subject>Microcalcification</subject><subject>Multiwavelet</subject><subject>Neural Network</subject><subject>Neurons</subject><subject>PSNR</subject><subject>Wavelet transforms</subject><isbn>1457719908</isbn><isbn>9781457719905</isbn><isbn>9781457719899</isbn><isbn>9781457719912</isbn><isbn>1457719894</isbn><isbn>1457719916</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkNFKxDAQRSMiqGt_QF_6A61JmzbJo5Z1LSz4su9LmkxqtGlLk-6yf2_VDjMcBi6Xy0XokeCUECye62p43aYZJllaEsYFZVcoEowTWjBGBBfiGt2vj8D8FkXef-FlGM44IXdI1f0JfLCtDHbo42WddG5oJzl-WhVbJ1uI1eDGCbz_VcheLye7i7c-nr3t29jNXbBneYIOgv8T9DBPslsQzsP0_YBujOw8RCs36PC2PVTvyf5jV1cv-8QKHBKmuNZaYFYwZTRucsopo1qSXHAGija0UAybEnLRZCDLkgqdGWl0qXhjiMo36Onf1gLAcZyW7NPluNaS_wAaJVn3</recordid><startdate>201202</startdate><enddate>201202</enddate><creator>Ragupathy, U. S.</creator><creator>Kumar, A. S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201202</creationdate><title>Investigation on mammographic image compression and analysis using multiwavelets and neural network</title><author>Ragupathy, U. S. ; Kumar, A. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-7c8ddd90757cfd0b348474da13987ec4b45c70f6e39b2ea6649d2fafd6c8bf1c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Feature extraction</topic><topic>Hospitals</topic><topic>Image coding</topic><topic>Image Compression</topic><topic>Image reconstruction</topic><topic>Mammography</topic><topic>Microcalcification</topic><topic>Multiwavelet</topic><topic>Neural Network</topic><topic>Neurons</topic><topic>PSNR</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Ragupathy, U. S.</creatorcontrib><creatorcontrib>Kumar, A. S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ragupathy, U. S.</au><au>Kumar, A. S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Investigation on mammographic image compression and analysis using multiwavelets and neural network</atitle><btitle>2012 International Conference on Biomedical Engineering (ICoBE)</btitle><stitle>ICoBE</stitle><date>2012-02</date><risdate>2012</risdate><spage>17</spage><epage>21</epage><pages>17-21</pages><isbn>1457719908</isbn><isbn>9781457719905</isbn><eisbn>9781457719899</eisbn><eisbn>9781457719912</eisbn><eisbn>1457719894</eisbn><eisbn>1457719916</eisbn><abstract>In digital mammography, the resulting electronic image is very large in size. Hence, the size poses a big challenge to the transmission, storage and manipulation of images. Microcalcification is one of the earliest sign of breast cancer and it appears in small size, low contrast radiopacites in high frequency spectrum of mammographic image. Scalar wavelets excel multiwavelets in terms of Peak Signal - to Noise Ratio (PSNR), but fail to capture high frequency information. Multiwavelet preserves high frequency information. This paper proposes multiwavelet based mammographic image compression, and microcalcification analysis in compressed reconstructed images against original images using multiwavelets and neural networks. For a set of four mammography images, the proposed balanced multiwavelet based compression method achieves an average PSNR of 9.064 dB greater than the existing compression scheme. It also details the classification results obtained through the multiwavelet based scheme in comparison with the existing scalar wavelet based scheme. For a testing sample of 30 images, the proposed classification scheme outperforms the scalar wavelet based classification by sensitivity of 2.23% and specificity of 3.4% for original (uncompressed) images. Also it increases the sensitivity by 2.72% and specificity by 8.4% for compressed reconstructed images. This increase in sensitivity and specificity reveals a better performance of the proposed detection scheme.</abstract><pub>IEEE</pub><doi>10.1109/ICoBE.2012.6178947</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1457719908
ispartof 2012 International Conference on Biomedical Engineering (ICoBE), 2012, p.17-21
issn
language eng
recordid cdi_ieee_primary_6178947
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Feature extraction
Hospitals
Image coding
Image Compression
Image reconstruction
Mammography
Microcalcification
Multiwavelet
Neural Network
Neurons
PSNR
Wavelet transforms
title Investigation on mammographic image compression and analysis using multiwavelets and neural network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A47%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Investigation%20on%20mammographic%20image%20compression%20and%20analysis%20using%20multiwavelets%20and%20neural%20network&rft.btitle=2012%20International%20Conference%20on%20Biomedical%20Engineering%20(ICoBE)&rft.au=Ragupathy,%20U.%20S.&rft.date=2012-02&rft.spage=17&rft.epage=21&rft.pages=17-21&rft.isbn=1457719908&rft.isbn_list=9781457719905&rft_id=info:doi/10.1109/ICoBE.2012.6178947&rft.eisbn=9781457719899&rft.eisbn_list=9781457719912&rft.eisbn_list=1457719894&rft.eisbn_list=1457719916&rft_dat=%3Cieee_6IE%3E6178947%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-7c8ddd90757cfd0b348474da13987ec4b45c70f6e39b2ea6649d2fafd6c8bf1c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6178947&rfr_iscdi=true