Loading…
An n- \hbox /i-Diamond/p-Diamond Diode With Nanotip Structure for High-Temperature CO Sensing Applications
The Pd/n-SnO x /i-diamond/p-diamond diodes prepared by field-enhanced hot-wire CVD (HWCVD) (FEHWCVD) system on a silicon substrate with nanotip structures are studied systematically. Both the nanotip structure and the better film quality deposited by the FEHWCVD lead the developed p-i-n diamond diod...
Saved in:
Published in: | IEEE transactions on electron devices 2012-06, Vol.59 (6), p.1786-1791 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Pd/n-SnO x /i-diamond/p-diamond diodes prepared by field-enhanced hot-wire CVD (HWCVD) (FEHWCVD) system on a silicon substrate with nanotip structures are studied systematically. Both the nanotip structure and the better film quality deposited by the FEHWCVD lead the developed p-i-n diamond diode to have a high relative sensitivity ratio of ~ 91% to 100-ppm-carbon monoxide (CO)-gas ambient. The sensitivity ratio is better than 79% compared to the one without the nanotip and prepared by the conventional HWCVD. Thus, the developed p-i-n diamond diode has better potential for high-temperature CO sensing applications. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2012.2191408 |