Loading…
Road Network Detection Using Probabilistic and Graph Theoretical Methods
Road network detection from very high resolution satellite and aerial images has diverse and important usage areas such as map generation and updating. Although an expert can label road pixels in a given image, this operation is prone to errors and quite time consuming. Therefore, an automated syste...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2012-11, Vol.50 (11), p.4441-4453 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Road network detection from very high resolution satellite and aerial images has diverse and important usage areas such as map generation and updating. Although an expert can label road pixels in a given image, this operation is prone to errors and quite time consuming. Therefore, an automated system is needed to detect the road network in a given satellite or aerial image in a robust manner. In this paper, we propose such a novel system. Our system has three main modules: probabilistic road center detection, road shape extraction, and graph-theory-based road network formation. These modules may be used sequentially or interchangeably depending on the application at hand. To show the strengths and weaknesses of our system, we tested it on several very high resolution satellite (Geoeye, Ikonos, and QuickBird) and aerial image sets. We compared our system with the ones existing in the literature. We also tested the sensitivity of our system to different parameter values. Obtained results indicate that our system can be used in detecting the road network on such images in a reliable and fast manner. |
---|---|
ISSN: | 0196-2892 1558-0644 |
DOI: | 10.1109/TGRS.2012.2190078 |