Loading…

Optimized Day-Ahead Pricing for Smart Grids with Device-Specific Scheduling Flexibility

Smart grids are capable of two-way communication between individual user devices and the electricity provider, enabling providers to create a control-feedback loop using time-dependent pricing. By charging users more in peak and less in off-peak hours, the provider can induce users to shift their co...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal on selected areas in communications 2012-07, Vol.30 (6), p.1075-1085
Main Authors: Joe-Wong, Carlee, Sen, Soumya, Ha, Sangtae, Chiang, Mung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c324t-32cfb74c691c956510ec9149c587a4309128c6c528a23d33f262c3200d67f2303
cites cdi_FETCH-LOGICAL-c324t-32cfb74c691c956510ec9149c587a4309128c6c528a23d33f262c3200d67f2303
container_end_page 1085
container_issue 6
container_start_page 1075
container_title IEEE journal on selected areas in communications
container_volume 30
creator Joe-Wong, Carlee
Sen, Soumya
Ha, Sangtae
Chiang, Mung
description Smart grids are capable of two-way communication between individual user devices and the electricity provider, enabling providers to create a control-feedback loop using time-dependent pricing. By charging users more in peak and less in off-peak hours, the provider can induce users to shift their consumption to off-peak periods, thus relieving stress on the power grid and the cost incurred from large peak loads. We formulate the electricity provider's cost minimization problem in setting these prices by considering consumers' device-specific scheduling flexibility and the provider's cost structure of purchasing electricity from an electricity generator. Consumers' willingness to shift their device usage is modeled probabilistically, with parameters that can be estimated from real data. We develop an algorithm for computing day-ahead prices, and another algorithm for estimating and refining user reaction to the prices. Together, these two algorithms allow the provider to dynamically adjust the offered prices based on user behavior. Numerical simulations with data from an Ontario electricity provider show that our pricing algorithm can significantly reduce the cost incurred by the provider.
doi_str_mv 10.1109/JSAC.2012.120706
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6194235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6194235</ieee_id><sourcerecordid>2702238911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-32cfb74c691c956510ec9149c587a4309128c6c528a23d33f262c3200d67f2303</originalsourceid><addsrcrecordid>eNpd0M9LwzAYxvEgCs7pXfAS8OKl882PJs1xbG4qgwlVPJYuTV1Gt9akVedfb8rEg6dcPs9L-CJ0SWBECKjbx3Q8GVEgdEQoSBBHaEDiOIkAIDlGA5CMRYkk4hSdeb8BIJwndIBel01rt_bbFHia76Px2uQFfnJW290bLmuH023uWjx3tvD407ZrPDUfVpsobYy2pdU41WtTdFXvZ5X5sitb2XZ_jk7KvPLm4vcdopfZ3fPkPlos5w-T8SLSjPI2YlSXK8m1UESrWMQEjFaEKx0nMucMFKGJFjqmSU5ZwVhJBQ1LgELIkjJgQ3RzuNu4-r0zvs221mtTVfnO1J3PCLCEAZdKBnr9j27qzu3C74KijCjKhQgKDkq72ntnyqxxNjTYB5T1pbO-dNaXzg6lw-TqMLHGmD8uiOKUxewHrv93Ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1023192466</pqid></control><display><type>article</type><title>Optimized Day-Ahead Pricing for Smart Grids with Device-Specific Scheduling Flexibility</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Joe-Wong, Carlee ; Sen, Soumya ; Ha, Sangtae ; Chiang, Mung</creator><creatorcontrib>Joe-Wong, Carlee ; Sen, Soumya ; Ha, Sangtae ; Chiang, Mung</creatorcontrib><description>Smart grids are capable of two-way communication between individual user devices and the electricity provider, enabling providers to create a control-feedback loop using time-dependent pricing. By charging users more in peak and less in off-peak hours, the provider can induce users to shift their consumption to off-peak periods, thus relieving stress on the power grid and the cost incurred from large peak loads. We formulate the electricity provider's cost minimization problem in setting these prices by considering consumers' device-specific scheduling flexibility and the provider's cost structure of purchasing electricity from an electricity generator. Consumers' willingness to shift their device usage is modeled probabilistically, with parameters that can be estimated from real data. We develop an algorithm for computing day-ahead prices, and another algorithm for estimating and refining user reaction to the prices. Together, these two algorithms allow the provider to dynamically adjust the offered prices based on user behavior. Numerical simulations with data from an Ontario electricity provider show that our pricing algorithm can significantly reduce the cost incurred by the provider.</description><identifier>ISSN: 0733-8716</identifier><identifier>EISSN: 1558-0008</identifier><identifier>DOI: 10.1109/JSAC.2012.120706</identifier><identifier>CODEN: ISACEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Cost engineering ; day-ahead pricing ; Delay ; demand response ; Devices ; Electric utilities ; Electricity ; Electricity distribution ; Energy consumption ; Flexibility ; Generators ; Mathematical models ; Optimization ; patience index ; Pricing ; Scheduling ; Sensitivity ; Smart-Grid pricing ; Studies</subject><ispartof>IEEE journal on selected areas in communications, 2012-07, Vol.30 (6), p.1075-1085</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-32cfb74c691c956510ec9149c587a4309128c6c528a23d33f262c3200d67f2303</citedby><cites>FETCH-LOGICAL-c324t-32cfb74c691c956510ec9149c587a4309128c6c528a23d33f262c3200d67f2303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6194235$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Joe-Wong, Carlee</creatorcontrib><creatorcontrib>Sen, Soumya</creatorcontrib><creatorcontrib>Ha, Sangtae</creatorcontrib><creatorcontrib>Chiang, Mung</creatorcontrib><title>Optimized Day-Ahead Pricing for Smart Grids with Device-Specific Scheduling Flexibility</title><title>IEEE journal on selected areas in communications</title><addtitle>J-SAC</addtitle><description>Smart grids are capable of two-way communication between individual user devices and the electricity provider, enabling providers to create a control-feedback loop using time-dependent pricing. By charging users more in peak and less in off-peak hours, the provider can induce users to shift their consumption to off-peak periods, thus relieving stress on the power grid and the cost incurred from large peak loads. We formulate the electricity provider's cost minimization problem in setting these prices by considering consumers' device-specific scheduling flexibility and the provider's cost structure of purchasing electricity from an electricity generator. Consumers' willingness to shift their device usage is modeled probabilistically, with parameters that can be estimated from real data. We develop an algorithm for computing day-ahead prices, and another algorithm for estimating and refining user reaction to the prices. Together, these two algorithms allow the provider to dynamically adjust the offered prices based on user behavior. Numerical simulations with data from an Ontario electricity provider show that our pricing algorithm can significantly reduce the cost incurred by the provider.</description><subject>Algorithms</subject><subject>Cost engineering</subject><subject>day-ahead pricing</subject><subject>Delay</subject><subject>demand response</subject><subject>Devices</subject><subject>Electric utilities</subject><subject>Electricity</subject><subject>Electricity distribution</subject><subject>Energy consumption</subject><subject>Flexibility</subject><subject>Generators</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>patience index</subject><subject>Pricing</subject><subject>Scheduling</subject><subject>Sensitivity</subject><subject>Smart-Grid pricing</subject><subject>Studies</subject><issn>0733-8716</issn><issn>1558-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpd0M9LwzAYxvEgCs7pXfAS8OKl882PJs1xbG4qgwlVPJYuTV1Gt9akVedfb8rEg6dcPs9L-CJ0SWBECKjbx3Q8GVEgdEQoSBBHaEDiOIkAIDlGA5CMRYkk4hSdeb8BIJwndIBel01rt_bbFHia76Px2uQFfnJW290bLmuH023uWjx3tvD407ZrPDUfVpsobYy2pdU41WtTdFXvZ5X5sitb2XZ_jk7KvPLm4vcdopfZ3fPkPlos5w-T8SLSjPI2YlSXK8m1UESrWMQEjFaEKx0nMucMFKGJFjqmSU5ZwVhJBQ1LgELIkjJgQ3RzuNu4-r0zvs221mtTVfnO1J3PCLCEAZdKBnr9j27qzu3C74KijCjKhQgKDkq72ntnyqxxNjTYB5T1pbO-dNaXzg6lw-TqMLHGmD8uiOKUxewHrv93Ng</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Joe-Wong, Carlee</creator><creator>Sen, Soumya</creator><creator>Ha, Sangtae</creator><creator>Chiang, Mung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20120701</creationdate><title>Optimized Day-Ahead Pricing for Smart Grids with Device-Specific Scheduling Flexibility</title><author>Joe-Wong, Carlee ; Sen, Soumya ; Ha, Sangtae ; Chiang, Mung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-32cfb74c691c956510ec9149c587a4309128c6c528a23d33f262c3200d67f2303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Cost engineering</topic><topic>day-ahead pricing</topic><topic>Delay</topic><topic>demand response</topic><topic>Devices</topic><topic>Electric utilities</topic><topic>Electricity</topic><topic>Electricity distribution</topic><topic>Energy consumption</topic><topic>Flexibility</topic><topic>Generators</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>patience index</topic><topic>Pricing</topic><topic>Scheduling</topic><topic>Sensitivity</topic><topic>Smart-Grid pricing</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joe-Wong, Carlee</creatorcontrib><creatorcontrib>Sen, Soumya</creatorcontrib><creatorcontrib>Ha, Sangtae</creatorcontrib><creatorcontrib>Chiang, Mung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal on selected areas in communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joe-Wong, Carlee</au><au>Sen, Soumya</au><au>Ha, Sangtae</au><au>Chiang, Mung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimized Day-Ahead Pricing for Smart Grids with Device-Specific Scheduling Flexibility</atitle><jtitle>IEEE journal on selected areas in communications</jtitle><stitle>J-SAC</stitle><date>2012-07-01</date><risdate>2012</risdate><volume>30</volume><issue>6</issue><spage>1075</spage><epage>1085</epage><pages>1075-1085</pages><issn>0733-8716</issn><eissn>1558-0008</eissn><coden>ISACEM</coden><abstract>Smart grids are capable of two-way communication between individual user devices and the electricity provider, enabling providers to create a control-feedback loop using time-dependent pricing. By charging users more in peak and less in off-peak hours, the provider can induce users to shift their consumption to off-peak periods, thus relieving stress on the power grid and the cost incurred from large peak loads. We formulate the electricity provider's cost minimization problem in setting these prices by considering consumers' device-specific scheduling flexibility and the provider's cost structure of purchasing electricity from an electricity generator. Consumers' willingness to shift their device usage is modeled probabilistically, with parameters that can be estimated from real data. We develop an algorithm for computing day-ahead prices, and another algorithm for estimating and refining user reaction to the prices. Together, these two algorithms allow the provider to dynamically adjust the offered prices based on user behavior. Numerical simulations with data from an Ontario electricity provider show that our pricing algorithm can significantly reduce the cost incurred by the provider.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSAC.2012.120706</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0733-8716
ispartof IEEE journal on selected areas in communications, 2012-07, Vol.30 (6), p.1075-1085
issn 0733-8716
1558-0008
language eng
recordid cdi_ieee_primary_6194235
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Cost engineering
day-ahead pricing
Delay
demand response
Devices
Electric utilities
Electricity
Electricity distribution
Energy consumption
Flexibility
Generators
Mathematical models
Optimization
patience index
Pricing
Scheduling
Sensitivity
Smart-Grid pricing
Studies
title Optimized Day-Ahead Pricing for Smart Grids with Device-Specific Scheduling Flexibility
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T14%3A29%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimized%20Day-Ahead%20Pricing%20for%20Smart%20Grids%20with%20Device-Specific%20Scheduling%20Flexibility&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20communications&rft.au=Joe-Wong,%20Carlee&rft.date=2012-07-01&rft.volume=30&rft.issue=6&rft.spage=1075&rft.epage=1085&rft.pages=1075-1085&rft.issn=0733-8716&rft.eissn=1558-0008&rft.coden=ISACEM&rft_id=info:doi/10.1109/JSAC.2012.120706&rft_dat=%3Cproquest_ieee_%3E2702238911%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-32cfb74c691c956510ec9149c587a4309128c6c528a23d33f262c3200d67f2303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1023192466&rft_id=info:pmid/&rft_ieee_id=6194235&rfr_iscdi=true