Loading…
Optimized Day-Ahead Pricing for Smart Grids with Device-Specific Scheduling Flexibility
Smart grids are capable of two-way communication between individual user devices and the electricity provider, enabling providers to create a control-feedback loop using time-dependent pricing. By charging users more in peak and less in off-peak hours, the provider can induce users to shift their co...
Saved in:
Published in: | IEEE journal on selected areas in communications 2012-07, Vol.30 (6), p.1075-1085 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c324t-32cfb74c691c956510ec9149c587a4309128c6c528a23d33f262c3200d67f2303 |
---|---|
cites | cdi_FETCH-LOGICAL-c324t-32cfb74c691c956510ec9149c587a4309128c6c528a23d33f262c3200d67f2303 |
container_end_page | 1085 |
container_issue | 6 |
container_start_page | 1075 |
container_title | IEEE journal on selected areas in communications |
container_volume | 30 |
creator | Joe-Wong, Carlee Sen, Soumya Ha, Sangtae Chiang, Mung |
description | Smart grids are capable of two-way communication between individual user devices and the electricity provider, enabling providers to create a control-feedback loop using time-dependent pricing. By charging users more in peak and less in off-peak hours, the provider can induce users to shift their consumption to off-peak periods, thus relieving stress on the power grid and the cost incurred from large peak loads. We formulate the electricity provider's cost minimization problem in setting these prices by considering consumers' device-specific scheduling flexibility and the provider's cost structure of purchasing electricity from an electricity generator. Consumers' willingness to shift their device usage is modeled probabilistically, with parameters that can be estimated from real data. We develop an algorithm for computing day-ahead prices, and another algorithm for estimating and refining user reaction to the prices. Together, these two algorithms allow the provider to dynamically adjust the offered prices based on user behavior. Numerical simulations with data from an Ontario electricity provider show that our pricing algorithm can significantly reduce the cost incurred by the provider. |
doi_str_mv | 10.1109/JSAC.2012.120706 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6194235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6194235</ieee_id><sourcerecordid>2702238911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-32cfb74c691c956510ec9149c587a4309128c6c528a23d33f262c3200d67f2303</originalsourceid><addsrcrecordid>eNpd0M9LwzAYxvEgCs7pXfAS8OKl882PJs1xbG4qgwlVPJYuTV1Gt9akVedfb8rEg6dcPs9L-CJ0SWBECKjbx3Q8GVEgdEQoSBBHaEDiOIkAIDlGA5CMRYkk4hSdeb8BIJwndIBel01rt_bbFHia76Px2uQFfnJW290bLmuH023uWjx3tvD407ZrPDUfVpsobYy2pdU41WtTdFXvZ5X5sitb2XZ_jk7KvPLm4vcdopfZ3fPkPlos5w-T8SLSjPI2YlSXK8m1UESrWMQEjFaEKx0nMucMFKGJFjqmSU5ZwVhJBQ1LgELIkjJgQ3RzuNu4-r0zvs221mtTVfnO1J3PCLCEAZdKBnr9j27qzu3C74KijCjKhQgKDkq72ntnyqxxNjTYB5T1pbO-dNaXzg6lw-TqMLHGmD8uiOKUxewHrv93Ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1023192466</pqid></control><display><type>article</type><title>Optimized Day-Ahead Pricing for Smart Grids with Device-Specific Scheduling Flexibility</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Joe-Wong, Carlee ; Sen, Soumya ; Ha, Sangtae ; Chiang, Mung</creator><creatorcontrib>Joe-Wong, Carlee ; Sen, Soumya ; Ha, Sangtae ; Chiang, Mung</creatorcontrib><description>Smart grids are capable of two-way communication between individual user devices and the electricity provider, enabling providers to create a control-feedback loop using time-dependent pricing. By charging users more in peak and less in off-peak hours, the provider can induce users to shift their consumption to off-peak periods, thus relieving stress on the power grid and the cost incurred from large peak loads. We formulate the electricity provider's cost minimization problem in setting these prices by considering consumers' device-specific scheduling flexibility and the provider's cost structure of purchasing electricity from an electricity generator. Consumers' willingness to shift their device usage is modeled probabilistically, with parameters that can be estimated from real data. We develop an algorithm for computing day-ahead prices, and another algorithm for estimating and refining user reaction to the prices. Together, these two algorithms allow the provider to dynamically adjust the offered prices based on user behavior. Numerical simulations with data from an Ontario electricity provider show that our pricing algorithm can significantly reduce the cost incurred by the provider.</description><identifier>ISSN: 0733-8716</identifier><identifier>EISSN: 1558-0008</identifier><identifier>DOI: 10.1109/JSAC.2012.120706</identifier><identifier>CODEN: ISACEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Cost engineering ; day-ahead pricing ; Delay ; demand response ; Devices ; Electric utilities ; Electricity ; Electricity distribution ; Energy consumption ; Flexibility ; Generators ; Mathematical models ; Optimization ; patience index ; Pricing ; Scheduling ; Sensitivity ; Smart-Grid pricing ; Studies</subject><ispartof>IEEE journal on selected areas in communications, 2012-07, Vol.30 (6), p.1075-1085</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-32cfb74c691c956510ec9149c587a4309128c6c528a23d33f262c3200d67f2303</citedby><cites>FETCH-LOGICAL-c324t-32cfb74c691c956510ec9149c587a4309128c6c528a23d33f262c3200d67f2303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6194235$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Joe-Wong, Carlee</creatorcontrib><creatorcontrib>Sen, Soumya</creatorcontrib><creatorcontrib>Ha, Sangtae</creatorcontrib><creatorcontrib>Chiang, Mung</creatorcontrib><title>Optimized Day-Ahead Pricing for Smart Grids with Device-Specific Scheduling Flexibility</title><title>IEEE journal on selected areas in communications</title><addtitle>J-SAC</addtitle><description>Smart grids are capable of two-way communication between individual user devices and the electricity provider, enabling providers to create a control-feedback loop using time-dependent pricing. By charging users more in peak and less in off-peak hours, the provider can induce users to shift their consumption to off-peak periods, thus relieving stress on the power grid and the cost incurred from large peak loads. We formulate the electricity provider's cost minimization problem in setting these prices by considering consumers' device-specific scheduling flexibility and the provider's cost structure of purchasing electricity from an electricity generator. Consumers' willingness to shift their device usage is modeled probabilistically, with parameters that can be estimated from real data. We develop an algorithm for computing day-ahead prices, and another algorithm for estimating and refining user reaction to the prices. Together, these two algorithms allow the provider to dynamically adjust the offered prices based on user behavior. Numerical simulations with data from an Ontario electricity provider show that our pricing algorithm can significantly reduce the cost incurred by the provider.</description><subject>Algorithms</subject><subject>Cost engineering</subject><subject>day-ahead pricing</subject><subject>Delay</subject><subject>demand response</subject><subject>Devices</subject><subject>Electric utilities</subject><subject>Electricity</subject><subject>Electricity distribution</subject><subject>Energy consumption</subject><subject>Flexibility</subject><subject>Generators</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>patience index</subject><subject>Pricing</subject><subject>Scheduling</subject><subject>Sensitivity</subject><subject>Smart-Grid pricing</subject><subject>Studies</subject><issn>0733-8716</issn><issn>1558-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpd0M9LwzAYxvEgCs7pXfAS8OKl882PJs1xbG4qgwlVPJYuTV1Gt9akVedfb8rEg6dcPs9L-CJ0SWBECKjbx3Q8GVEgdEQoSBBHaEDiOIkAIDlGA5CMRYkk4hSdeb8BIJwndIBel01rt_bbFHia76Px2uQFfnJW290bLmuH023uWjx3tvD407ZrPDUfVpsobYy2pdU41WtTdFXvZ5X5sitb2XZ_jk7KvPLm4vcdopfZ3fPkPlos5w-T8SLSjPI2YlSXK8m1UESrWMQEjFaEKx0nMucMFKGJFjqmSU5ZwVhJBQ1LgELIkjJgQ3RzuNu4-r0zvs221mtTVfnO1J3PCLCEAZdKBnr9j27qzu3C74KijCjKhQgKDkq72ntnyqxxNjTYB5T1pbO-dNaXzg6lw-TqMLHGmD8uiOKUxewHrv93Ng</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Joe-Wong, Carlee</creator><creator>Sen, Soumya</creator><creator>Ha, Sangtae</creator><creator>Chiang, Mung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20120701</creationdate><title>Optimized Day-Ahead Pricing for Smart Grids with Device-Specific Scheduling Flexibility</title><author>Joe-Wong, Carlee ; Sen, Soumya ; Ha, Sangtae ; Chiang, Mung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-32cfb74c691c956510ec9149c587a4309128c6c528a23d33f262c3200d67f2303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Cost engineering</topic><topic>day-ahead pricing</topic><topic>Delay</topic><topic>demand response</topic><topic>Devices</topic><topic>Electric utilities</topic><topic>Electricity</topic><topic>Electricity distribution</topic><topic>Energy consumption</topic><topic>Flexibility</topic><topic>Generators</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>patience index</topic><topic>Pricing</topic><topic>Scheduling</topic><topic>Sensitivity</topic><topic>Smart-Grid pricing</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joe-Wong, Carlee</creatorcontrib><creatorcontrib>Sen, Soumya</creatorcontrib><creatorcontrib>Ha, Sangtae</creatorcontrib><creatorcontrib>Chiang, Mung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal on selected areas in communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joe-Wong, Carlee</au><au>Sen, Soumya</au><au>Ha, Sangtae</au><au>Chiang, Mung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimized Day-Ahead Pricing for Smart Grids with Device-Specific Scheduling Flexibility</atitle><jtitle>IEEE journal on selected areas in communications</jtitle><stitle>J-SAC</stitle><date>2012-07-01</date><risdate>2012</risdate><volume>30</volume><issue>6</issue><spage>1075</spage><epage>1085</epage><pages>1075-1085</pages><issn>0733-8716</issn><eissn>1558-0008</eissn><coden>ISACEM</coden><abstract>Smart grids are capable of two-way communication between individual user devices and the electricity provider, enabling providers to create a control-feedback loop using time-dependent pricing. By charging users more in peak and less in off-peak hours, the provider can induce users to shift their consumption to off-peak periods, thus relieving stress on the power grid and the cost incurred from large peak loads. We formulate the electricity provider's cost minimization problem in setting these prices by considering consumers' device-specific scheduling flexibility and the provider's cost structure of purchasing electricity from an electricity generator. Consumers' willingness to shift their device usage is modeled probabilistically, with parameters that can be estimated from real data. We develop an algorithm for computing day-ahead prices, and another algorithm for estimating and refining user reaction to the prices. Together, these two algorithms allow the provider to dynamically adjust the offered prices based on user behavior. Numerical simulations with data from an Ontario electricity provider show that our pricing algorithm can significantly reduce the cost incurred by the provider.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSAC.2012.120706</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0733-8716 |
ispartof | IEEE journal on selected areas in communications, 2012-07, Vol.30 (6), p.1075-1085 |
issn | 0733-8716 1558-0008 |
language | eng |
recordid | cdi_ieee_primary_6194235 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Cost engineering day-ahead pricing Delay demand response Devices Electric utilities Electricity Electricity distribution Energy consumption Flexibility Generators Mathematical models Optimization patience index Pricing Scheduling Sensitivity Smart-Grid pricing Studies |
title | Optimized Day-Ahead Pricing for Smart Grids with Device-Specific Scheduling Flexibility |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T14%3A29%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimized%20Day-Ahead%20Pricing%20for%20Smart%20Grids%20with%20Device-Specific%20Scheduling%20Flexibility&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20communications&rft.au=Joe-Wong,%20Carlee&rft.date=2012-07-01&rft.volume=30&rft.issue=6&rft.spage=1075&rft.epage=1085&rft.pages=1075-1085&rft.issn=0733-8716&rft.eissn=1558-0008&rft.coden=ISACEM&rft_id=info:doi/10.1109/JSAC.2012.120706&rft_dat=%3Cproquest_ieee_%3E2702238911%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-32cfb74c691c956510ec9149c587a4309128c6c528a23d33f262c3200d67f2303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1023192466&rft_id=info:pmid/&rft_ieee_id=6194235&rfr_iscdi=true |