Loading…

ADAM: An adaptive beamforming system for multicasting in wireless LANs

We present the design and implementation of ADAM, the first adaptive beamforming based multicast system and experimental framework for indoor wireless environments. ADAM addresses the joint problem of adaptive beamformer design at the PHY layer and client scheduling at the MAC layer by proposing eff...

Full description

Saved in:
Bibliographic Details
Main Authors: Aryafar, E., Khojastepour, M., Sundaresan, K., Rangarajan, S., Knightly, E. W.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present the design and implementation of ADAM, the first adaptive beamforming based multicast system and experimental framework for indoor wireless environments. ADAM addresses the joint problem of adaptive beamformer design at the PHY layer and client scheduling at the MAC layer by proposing efficient algorithms that are amenable to practical implementation. ADAM is implemented on an FPGA platform and its performance is compared against that of omni-directional and switched beamforming based multicast. Our experimental results reveal that (i) switched multicast beamforming has limited gains in indoor multi-path environments, whose deficiencies can be effectively overcome by ADAM to yield an average gain of three-fold; (ii) the higher the dynamic range of the discrete transmission rates employed by the MAC hardware, the higher the gains in ADAM's performance, yielding upto nine-fold improvement over omni with the 802.11 rate table; and (iii) finally, ADAM's performance is susceptible to channel variations due to user mobility and infrequent channel information feedback. However, we show that training ADAM's SNR-rate mapping to incorporate feedback rate and coherence time significantly increases its robustness to channel dynamics.
ISSN:0743-166X
2641-9874
DOI:10.1109/INFCOM.2012.6195513