Loading…
WristSense: Wrist-worn sensor device with camera for daily activity recognition
This demo paper describes our daily activity sensing and recognition system with a wrist-worn sensor device called WristSense. The wrist-worn device is equipped with an accelerometer and camera, and can send the sensor data to a Bluetooth-enabled smart phone. With the accelerometer, we capture the w...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 512 |
container_issue | |
container_start_page | 510 |
container_title | |
container_volume | |
creator | Maekawa, T. Kishino, Y. Yanagisawa, Y. Sakurai, Y. |
description | This demo paper describes our daily activity sensing and recognition system with a wrist-worn sensor device called WristSense. The wrist-worn device is equipped with an accelerometer and camera, and can send the sensor data to a Bluetooth-enabled smart phone. With the accelerometer, we capture the wearer's hand postures and hand movements. With the camera, we capture visual information related to an object that the wearer is holding. An object that the wearer is using relates strongly to the activity that the wearer is performing. For example, an image (frame) including a coffee maker that is captured when the wearer is making coffee can be useful for recognizing the activity of making coffee. Also, a logger application on a phone records sounds related to daily activities. We use the sensor data in an attempt to recognize high-level daily activities that involve object use in real time. |
doi_str_mv | 10.1109/PerComW.2012.6197551 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6197551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6197551</ieee_id><sourcerecordid>6197551</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-1fef948869cacc1b01fb6bad9059fd213682bf641f5f45edf3b76fb37668e0373</originalsourceid><addsrcrecordid>eNo1UM1KxDAYjIigrn0CPeQFWvM1TdJ4k-IfLKzgwh6XJP2ikW0rSdmlb2_VdS7zcxiGIeQGWAHA9O0rxmboNkXJoCwkaCUEnJBMqxoqqTjTTPFTcvlvRHlOspQ-2QzFuKzEBVltYkjjG_YJ7-ivzg9D7GmakyHSFvfBIT2E8YM602E01P_EJuwmatwY9mGcaEQ3vPdhDEN_Rc682SXMjrwg68eHdfOcL1dPL839Mg-ajTl49Lqqa6mdcQ4sA2-lNe28Ufu2BC7r0npZgRe-Eth6bpX0lispa2Rc8QW5_qsNiLj9iqEzcdoeL-Df3CtSJA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>WristSense: Wrist-worn sensor device with camera for daily activity recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Maekawa, T. ; Kishino, Y. ; Yanagisawa, Y. ; Sakurai, Y.</creator><creatorcontrib>Maekawa, T. ; Kishino, Y. ; Yanagisawa, Y. ; Sakurai, Y.</creatorcontrib><description>This demo paper describes our daily activity sensing and recognition system with a wrist-worn sensor device called WristSense. The wrist-worn device is equipped with an accelerometer and camera, and can send the sensor data to a Bluetooth-enabled smart phone. With the accelerometer, we capture the wearer's hand postures and hand movements. With the camera, we capture visual information related to an object that the wearer is holding. An object that the wearer is using relates strongly to the activity that the wearer is performing. For example, an image (frame) including a coffee maker that is captured when the wearer is making coffee can be useful for recognizing the activity of making coffee. Also, a logger application on a phone records sounds related to daily activities. We use the sensor data in an attempt to recognize high-level daily activities that involve object use in real time.</description><identifier>ISBN: 1467309052</identifier><identifier>ISBN: 9781467309059</identifier><identifier>EISBN: 9781467309073</identifier><identifier>EISBN: 1467309060</identifier><identifier>EISBN: 1467309079</identifier><identifier>EISBN: 9781467309066</identifier><identifier>DOI: 10.1109/PerComW.2012.6197551</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accelerometers ; Cameras ; Feature extraction ; Real time systems ; Smart phones ; Vectors ; Wrist</subject><ispartof>2012 IEEE International Conference on Pervasive Computing and Communications Workshops, 2012, p.510-512</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6197551$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6197551$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Maekawa, T.</creatorcontrib><creatorcontrib>Kishino, Y.</creatorcontrib><creatorcontrib>Yanagisawa, Y.</creatorcontrib><creatorcontrib>Sakurai, Y.</creatorcontrib><title>WristSense: Wrist-worn sensor device with camera for daily activity recognition</title><title>2012 IEEE International Conference on Pervasive Computing and Communications Workshops</title><addtitle>PerComW</addtitle><description>This demo paper describes our daily activity sensing and recognition system with a wrist-worn sensor device called WristSense. The wrist-worn device is equipped with an accelerometer and camera, and can send the sensor data to a Bluetooth-enabled smart phone. With the accelerometer, we capture the wearer's hand postures and hand movements. With the camera, we capture visual information related to an object that the wearer is holding. An object that the wearer is using relates strongly to the activity that the wearer is performing. For example, an image (frame) including a coffee maker that is captured when the wearer is making coffee can be useful for recognizing the activity of making coffee. Also, a logger application on a phone records sounds related to daily activities. We use the sensor data in an attempt to recognize high-level daily activities that involve object use in real time.</description><subject>Accelerometers</subject><subject>Cameras</subject><subject>Feature extraction</subject><subject>Real time systems</subject><subject>Smart phones</subject><subject>Vectors</subject><subject>Wrist</subject><isbn>1467309052</isbn><isbn>9781467309059</isbn><isbn>9781467309073</isbn><isbn>1467309060</isbn><isbn>1467309079</isbn><isbn>9781467309066</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1UM1KxDAYjIigrn0CPeQFWvM1TdJ4k-IfLKzgwh6XJP2ikW0rSdmlb2_VdS7zcxiGIeQGWAHA9O0rxmboNkXJoCwkaCUEnJBMqxoqqTjTTPFTcvlvRHlOspQ-2QzFuKzEBVltYkjjG_YJ7-ivzg9D7GmakyHSFvfBIT2E8YM602E01P_EJuwmatwY9mGcaEQ3vPdhDEN_Rc682SXMjrwg68eHdfOcL1dPL839Mg-ajTl49Lqqa6mdcQ4sA2-lNe28Ufu2BC7r0npZgRe-Eth6bpX0lispa2Rc8QW5_qsNiLj9iqEzcdoeL-Df3CtSJA</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Maekawa, T.</creator><creator>Kishino, Y.</creator><creator>Yanagisawa, Y.</creator><creator>Sakurai, Y.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201203</creationdate><title>WristSense: Wrist-worn sensor device with camera for daily activity recognition</title><author>Maekawa, T. ; Kishino, Y. ; Yanagisawa, Y. ; Sakurai, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-1fef948869cacc1b01fb6bad9059fd213682bf641f5f45edf3b76fb37668e0373</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accelerometers</topic><topic>Cameras</topic><topic>Feature extraction</topic><topic>Real time systems</topic><topic>Smart phones</topic><topic>Vectors</topic><topic>Wrist</topic><toplevel>online_resources</toplevel><creatorcontrib>Maekawa, T.</creatorcontrib><creatorcontrib>Kishino, Y.</creatorcontrib><creatorcontrib>Yanagisawa, Y.</creatorcontrib><creatorcontrib>Sakurai, Y.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Maekawa, T.</au><au>Kishino, Y.</au><au>Yanagisawa, Y.</au><au>Sakurai, Y.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>WristSense: Wrist-worn sensor device with camera for daily activity recognition</atitle><btitle>2012 IEEE International Conference on Pervasive Computing and Communications Workshops</btitle><stitle>PerComW</stitle><date>2012-03</date><risdate>2012</risdate><spage>510</spage><epage>512</epage><pages>510-512</pages><isbn>1467309052</isbn><isbn>9781467309059</isbn><eisbn>9781467309073</eisbn><eisbn>1467309060</eisbn><eisbn>1467309079</eisbn><eisbn>9781467309066</eisbn><abstract>This demo paper describes our daily activity sensing and recognition system with a wrist-worn sensor device called WristSense. The wrist-worn device is equipped with an accelerometer and camera, and can send the sensor data to a Bluetooth-enabled smart phone. With the accelerometer, we capture the wearer's hand postures and hand movements. With the camera, we capture visual information related to an object that the wearer is holding. An object that the wearer is using relates strongly to the activity that the wearer is performing. For example, an image (frame) including a coffee maker that is captured when the wearer is making coffee can be useful for recognizing the activity of making coffee. Also, a logger application on a phone records sounds related to daily activities. We use the sensor data in an attempt to recognize high-level daily activities that involve object use in real time.</abstract><pub>IEEE</pub><doi>10.1109/PerComW.2012.6197551</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1467309052 |
ispartof | 2012 IEEE International Conference on Pervasive Computing and Communications Workshops, 2012, p.510-512 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6197551 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accelerometers Cameras Feature extraction Real time systems Smart phones Vectors Wrist |
title | WristSense: Wrist-worn sensor device with camera for daily activity recognition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A36%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=WristSense:%20Wrist-worn%20sensor%20device%20with%20camera%20for%20daily%20activity%20recognition&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Pervasive%20Computing%20and%20Communications%20Workshops&rft.au=Maekawa,%20T.&rft.date=2012-03&rft.spage=510&rft.epage=512&rft.pages=510-512&rft.isbn=1467309052&rft.isbn_list=9781467309059&rft_id=info:doi/10.1109/PerComW.2012.6197551&rft.eisbn=9781467309073&rft.eisbn_list=1467309060&rft.eisbn_list=1467309079&rft.eisbn_list=9781467309066&rft_dat=%3Cieee_6IE%3E6197551%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-1fef948869cacc1b01fb6bad9059fd213682bf641f5f45edf3b76fb37668e0373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6197551&rfr_iscdi=true |