Loading…

Urban area and building detection on high resolution multispectral satellite images using spatial statistics

With the increase in the resolution and the amount of satellite images, automatic extraction of urban areas and buildings became more important in the past decade. Extracting such information manually is tedious and needs a lot of expert effort. In this work, a system for detecting the urban areas,...

Full description

Saved in:
Bibliographic Details
Main Authors: Sahin, Y., Teke, M., Erdem, A., Duzgun, S.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Sahin, Y.
Teke, M.
Erdem, A.
Duzgun, S.
description With the increase in the resolution and the amount of satellite images, automatic extraction of urban areas and buildings became more important in the past decade. Extracting such information manually is tedious and needs a lot of expert effort. In this work, a system for detecting the urban areas, then finding the buildings inside these areas is proposed. LISA analysis is used for detection of urban areas. After the urban area is detected, a mean-shift based segmentation is applied; then each segment is decided as building or not by using segment-test on spectral features and Local Moran's I value. Classification of buildings is done by KNN (K-Nearest Neighbor) classifier and Parzen classifiers. Input images to be used are 3 band multispectral images.
doi_str_mv 10.1109/SIU.2012.6204537
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6204537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6204537</ieee_id><sourcerecordid>6204537</sourcerecordid><originalsourceid>FETCH-ieee_primary_62045373</originalsourceid><addsrcrecordid>eNp9j8FKw0AQhre2gm3NXfCyL5B0drfZJGdR6lkL3sq2GdORbRp2Ngff3q3Uq_DDB_83MzBCPCgolIJm9fa6LTQoXVgN69JUE7FQa1sZgNJ-3Ii5to3JjVV2KrKmqv9cqWbJKVvmYKG-ExnzFwAoW2vT6Lnw27B3vXQBnXR9K_cj-Zb6TrYY8RDp3MuUI3VHGZDPfvytTqOPxEMaCM5LdhG9p4iSTq5DliNfLvDgIl10TORIB74Xt5_OM2ZXLsXjy_P70yYnRNwNIa2H7931QfO__QEZY1Cf</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Urban area and building detection on high resolution multispectral satellite images using spatial statistics</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sahin, Y. ; Teke, M. ; Erdem, A. ; Duzgun, S.</creator><creatorcontrib>Sahin, Y. ; Teke, M. ; Erdem, A. ; Duzgun, S.</creatorcontrib><description>With the increase in the resolution and the amount of satellite images, automatic extraction of urban areas and buildings became more important in the past decade. Extracting such information manually is tedious and needs a lot of expert effort. In this work, a system for detecting the urban areas, then finding the buildings inside these areas is proposed. LISA analysis is used for detection of urban areas. After the urban area is detected, a mean-shift based segmentation is applied; then each segment is decided as building or not by using segment-test on spectral features and Local Moran's I value. Classification of buildings is done by KNN (K-Nearest Neighbor) classifier and Parzen classifiers. Input images to be used are 3 band multispectral images.</description><identifier>ISSN: 2165-0608</identifier><identifier>ISBN: 9781467300551</identifier><identifier>ISBN: 1467300551</identifier><identifier>EISSN: 2693-3616</identifier><identifier>EISBN: 146730056X</identifier><identifier>EISBN: 1467300535</identifier><identifier>EISBN: 1467300543</identifier><identifier>EISBN: 9781467300568</identifier><identifier>EISBN: 9781467300544</identifier><identifier>EISBN: 9781467300537</identifier><identifier>DOI: 10.1109/SIU.2012.6204537</identifier><language>eng</language><publisher>IEEE</publisher><subject>Buildings ; Image segmentation ; Remote sensing ; Shape ; Spatial resolution ; Urban areas</subject><ispartof>2012 20th Signal Processing and Communications Applications Conference (SIU), 2012, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6204537$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6204537$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sahin, Y.</creatorcontrib><creatorcontrib>Teke, M.</creatorcontrib><creatorcontrib>Erdem, A.</creatorcontrib><creatorcontrib>Duzgun, S.</creatorcontrib><title>Urban area and building detection on high resolution multispectral satellite images using spatial statistics</title><title>2012 20th Signal Processing and Communications Applications Conference (SIU)</title><addtitle>SIU</addtitle><description>With the increase in the resolution and the amount of satellite images, automatic extraction of urban areas and buildings became more important in the past decade. Extracting such information manually is tedious and needs a lot of expert effort. In this work, a system for detecting the urban areas, then finding the buildings inside these areas is proposed. LISA analysis is used for detection of urban areas. After the urban area is detected, a mean-shift based segmentation is applied; then each segment is decided as building or not by using segment-test on spectral features and Local Moran's I value. Classification of buildings is done by KNN (K-Nearest Neighbor) classifier and Parzen classifiers. Input images to be used are 3 band multispectral images.</description><subject>Buildings</subject><subject>Image segmentation</subject><subject>Remote sensing</subject><subject>Shape</subject><subject>Spatial resolution</subject><subject>Urban areas</subject><issn>2165-0608</issn><issn>2693-3616</issn><isbn>9781467300551</isbn><isbn>1467300551</isbn><isbn>146730056X</isbn><isbn>1467300535</isbn><isbn>1467300543</isbn><isbn>9781467300568</isbn><isbn>9781467300544</isbn><isbn>9781467300537</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNp9j8FKw0AQhre2gm3NXfCyL5B0drfZJGdR6lkL3sq2GdORbRp2Ngff3q3Uq_DDB_83MzBCPCgolIJm9fa6LTQoXVgN69JUE7FQa1sZgNJ-3Ii5to3JjVV2KrKmqv9cqWbJKVvmYKG-ExnzFwAoW2vT6Lnw27B3vXQBnXR9K_cj-Zb6TrYY8RDp3MuUI3VHGZDPfvytTqOPxEMaCM5LdhG9p4iSTq5DliNfLvDgIl10TORIB74Xt5_OM2ZXLsXjy_P70yYnRNwNIa2H7931QfO__QEZY1Cf</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Sahin, Y.</creator><creator>Teke, M.</creator><creator>Erdem, A.</creator><creator>Duzgun, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201204</creationdate><title>Urban area and building detection on high resolution multispectral satellite images using spatial statistics</title><author>Sahin, Y. ; Teke, M. ; Erdem, A. ; Duzgun, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_62045373</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Buildings</topic><topic>Image segmentation</topic><topic>Remote sensing</topic><topic>Shape</topic><topic>Spatial resolution</topic><topic>Urban areas</topic><toplevel>online_resources</toplevel><creatorcontrib>Sahin, Y.</creatorcontrib><creatorcontrib>Teke, M.</creatorcontrib><creatorcontrib>Erdem, A.</creatorcontrib><creatorcontrib>Duzgun, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sahin, Y.</au><au>Teke, M.</au><au>Erdem, A.</au><au>Duzgun, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Urban area and building detection on high resolution multispectral satellite images using spatial statistics</atitle><btitle>2012 20th Signal Processing and Communications Applications Conference (SIU)</btitle><stitle>SIU</stitle><date>2012-04</date><risdate>2012</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2165-0608</issn><eissn>2693-3616</eissn><isbn>9781467300551</isbn><isbn>1467300551</isbn><eisbn>146730056X</eisbn><eisbn>1467300535</eisbn><eisbn>1467300543</eisbn><eisbn>9781467300568</eisbn><eisbn>9781467300544</eisbn><eisbn>9781467300537</eisbn><abstract>With the increase in the resolution and the amount of satellite images, automatic extraction of urban areas and buildings became more important in the past decade. Extracting such information manually is tedious and needs a lot of expert effort. In this work, a system for detecting the urban areas, then finding the buildings inside these areas is proposed. LISA analysis is used for detection of urban areas. After the urban area is detected, a mean-shift based segmentation is applied; then each segment is decided as building or not by using segment-test on spectral features and Local Moran's I value. Classification of buildings is done by KNN (K-Nearest Neighbor) classifier and Parzen classifiers. Input images to be used are 3 band multispectral images.</abstract><pub>IEEE</pub><doi>10.1109/SIU.2012.6204537</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2165-0608
ispartof 2012 20th Signal Processing and Communications Applications Conference (SIU), 2012, p.1-4
issn 2165-0608
2693-3616
language eng
recordid cdi_ieee_primary_6204537
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Buildings
Image segmentation
Remote sensing
Shape
Spatial resolution
Urban areas
title Urban area and building detection on high resolution multispectral satellite images using spatial statistics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A50%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Urban%20area%20and%20building%20detection%20on%20high%20resolution%20multispectral%20satellite%20images%20using%20spatial%20statistics&rft.btitle=2012%2020th%20Signal%20Processing%20and%20Communications%20Applications%20Conference%20(SIU)&rft.au=Sahin,%20Y.&rft.date=2012-04&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2165-0608&rft.eissn=2693-3616&rft.isbn=9781467300551&rft.isbn_list=1467300551&rft_id=info:doi/10.1109/SIU.2012.6204537&rft.eisbn=146730056X&rft.eisbn_list=1467300535&rft.eisbn_list=1467300543&rft.eisbn_list=9781467300568&rft.eisbn_list=9781467300544&rft.eisbn_list=9781467300537&rft_dat=%3Cieee_6IE%3E6204537%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_62045373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6204537&rfr_iscdi=true