Loading…
Urban area and building detection on high resolution multispectral satellite images using spatial statistics
With the increase in the resolution and the amount of satellite images, automatic extraction of urban areas and buildings became more important in the past decade. Extracting such information manually is tedious and needs a lot of expert effort. In this work, a system for detecting the urban areas,...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Sahin, Y. Teke, M. Erdem, A. Duzgun, S. |
description | With the increase in the resolution and the amount of satellite images, automatic extraction of urban areas and buildings became more important in the past decade. Extracting such information manually is tedious and needs a lot of expert effort. In this work, a system for detecting the urban areas, then finding the buildings inside these areas is proposed. LISA analysis is used for detection of urban areas. After the urban area is detected, a mean-shift based segmentation is applied; then each segment is decided as building or not by using segment-test on spectral features and Local Moran's I value. Classification of buildings is done by KNN (K-Nearest Neighbor) classifier and Parzen classifiers. Input images to be used are 3 band multispectral images. |
doi_str_mv | 10.1109/SIU.2012.6204537 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6204537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6204537</ieee_id><sourcerecordid>6204537</sourcerecordid><originalsourceid>FETCH-ieee_primary_62045373</originalsourceid><addsrcrecordid>eNp9j8FKw0AQhre2gm3NXfCyL5B0drfZJGdR6lkL3sq2GdORbRp2Ngff3q3Uq_DDB_83MzBCPCgolIJm9fa6LTQoXVgN69JUE7FQa1sZgNJ-3Ii5to3JjVV2KrKmqv9cqWbJKVvmYKG-ExnzFwAoW2vT6Lnw27B3vXQBnXR9K_cj-Zb6TrYY8RDp3MuUI3VHGZDPfvytTqOPxEMaCM5LdhG9p4iSTq5DliNfLvDgIl10TORIB74Xt5_OM2ZXLsXjy_P70yYnRNwNIa2H7931QfO__QEZY1Cf</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Urban area and building detection on high resolution multispectral satellite images using spatial statistics</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sahin, Y. ; Teke, M. ; Erdem, A. ; Duzgun, S.</creator><creatorcontrib>Sahin, Y. ; Teke, M. ; Erdem, A. ; Duzgun, S.</creatorcontrib><description>With the increase in the resolution and the amount of satellite images, automatic extraction of urban areas and buildings became more important in the past decade. Extracting such information manually is tedious and needs a lot of expert effort. In this work, a system for detecting the urban areas, then finding the buildings inside these areas is proposed. LISA analysis is used for detection of urban areas. After the urban area is detected, a mean-shift based segmentation is applied; then each segment is decided as building or not by using segment-test on spectral features and Local Moran's I value. Classification of buildings is done by KNN (K-Nearest Neighbor) classifier and Parzen classifiers. Input images to be used are 3 band multispectral images.</description><identifier>ISSN: 2165-0608</identifier><identifier>ISBN: 9781467300551</identifier><identifier>ISBN: 1467300551</identifier><identifier>EISSN: 2693-3616</identifier><identifier>EISBN: 146730056X</identifier><identifier>EISBN: 1467300535</identifier><identifier>EISBN: 1467300543</identifier><identifier>EISBN: 9781467300568</identifier><identifier>EISBN: 9781467300544</identifier><identifier>EISBN: 9781467300537</identifier><identifier>DOI: 10.1109/SIU.2012.6204537</identifier><language>eng</language><publisher>IEEE</publisher><subject>Buildings ; Image segmentation ; Remote sensing ; Shape ; Spatial resolution ; Urban areas</subject><ispartof>2012 20th Signal Processing and Communications Applications Conference (SIU), 2012, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6204537$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6204537$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sahin, Y.</creatorcontrib><creatorcontrib>Teke, M.</creatorcontrib><creatorcontrib>Erdem, A.</creatorcontrib><creatorcontrib>Duzgun, S.</creatorcontrib><title>Urban area and building detection on high resolution multispectral satellite images using spatial statistics</title><title>2012 20th Signal Processing and Communications Applications Conference (SIU)</title><addtitle>SIU</addtitle><description>With the increase in the resolution and the amount of satellite images, automatic extraction of urban areas and buildings became more important in the past decade. Extracting such information manually is tedious and needs a lot of expert effort. In this work, a system for detecting the urban areas, then finding the buildings inside these areas is proposed. LISA analysis is used for detection of urban areas. After the urban area is detected, a mean-shift based segmentation is applied; then each segment is decided as building or not by using segment-test on spectral features and Local Moran's I value. Classification of buildings is done by KNN (K-Nearest Neighbor) classifier and Parzen classifiers. Input images to be used are 3 band multispectral images.</description><subject>Buildings</subject><subject>Image segmentation</subject><subject>Remote sensing</subject><subject>Shape</subject><subject>Spatial resolution</subject><subject>Urban areas</subject><issn>2165-0608</issn><issn>2693-3616</issn><isbn>9781467300551</isbn><isbn>1467300551</isbn><isbn>146730056X</isbn><isbn>1467300535</isbn><isbn>1467300543</isbn><isbn>9781467300568</isbn><isbn>9781467300544</isbn><isbn>9781467300537</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNp9j8FKw0AQhre2gm3NXfCyL5B0drfZJGdR6lkL3sq2GdORbRp2Ngff3q3Uq_DDB_83MzBCPCgolIJm9fa6LTQoXVgN69JUE7FQa1sZgNJ-3Ii5to3JjVV2KrKmqv9cqWbJKVvmYKG-ExnzFwAoW2vT6Lnw27B3vXQBnXR9K_cj-Zb6TrYY8RDp3MuUI3VHGZDPfvytTqOPxEMaCM5LdhG9p4iSTq5DliNfLvDgIl10TORIB74Xt5_OM2ZXLsXjy_P70yYnRNwNIa2H7931QfO__QEZY1Cf</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Sahin, Y.</creator><creator>Teke, M.</creator><creator>Erdem, A.</creator><creator>Duzgun, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201204</creationdate><title>Urban area and building detection on high resolution multispectral satellite images using spatial statistics</title><author>Sahin, Y. ; Teke, M. ; Erdem, A. ; Duzgun, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_62045373</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Buildings</topic><topic>Image segmentation</topic><topic>Remote sensing</topic><topic>Shape</topic><topic>Spatial resolution</topic><topic>Urban areas</topic><toplevel>online_resources</toplevel><creatorcontrib>Sahin, Y.</creatorcontrib><creatorcontrib>Teke, M.</creatorcontrib><creatorcontrib>Erdem, A.</creatorcontrib><creatorcontrib>Duzgun, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sahin, Y.</au><au>Teke, M.</au><au>Erdem, A.</au><au>Duzgun, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Urban area and building detection on high resolution multispectral satellite images using spatial statistics</atitle><btitle>2012 20th Signal Processing and Communications Applications Conference (SIU)</btitle><stitle>SIU</stitle><date>2012-04</date><risdate>2012</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2165-0608</issn><eissn>2693-3616</eissn><isbn>9781467300551</isbn><isbn>1467300551</isbn><eisbn>146730056X</eisbn><eisbn>1467300535</eisbn><eisbn>1467300543</eisbn><eisbn>9781467300568</eisbn><eisbn>9781467300544</eisbn><eisbn>9781467300537</eisbn><abstract>With the increase in the resolution and the amount of satellite images, automatic extraction of urban areas and buildings became more important in the past decade. Extracting such information manually is tedious and needs a lot of expert effort. In this work, a system for detecting the urban areas, then finding the buildings inside these areas is proposed. LISA analysis is used for detection of urban areas. After the urban area is detected, a mean-shift based segmentation is applied; then each segment is decided as building or not by using segment-test on spectral features and Local Moran's I value. Classification of buildings is done by KNN (K-Nearest Neighbor) classifier and Parzen classifiers. Input images to be used are 3 band multispectral images.</abstract><pub>IEEE</pub><doi>10.1109/SIU.2012.6204537</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2165-0608 |
ispartof | 2012 20th Signal Processing and Communications Applications Conference (SIU), 2012, p.1-4 |
issn | 2165-0608 2693-3616 |
language | eng |
recordid | cdi_ieee_primary_6204537 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Buildings Image segmentation Remote sensing Shape Spatial resolution Urban areas |
title | Urban area and building detection on high resolution multispectral satellite images using spatial statistics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A50%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Urban%20area%20and%20building%20detection%20on%20high%20resolution%20multispectral%20satellite%20images%20using%20spatial%20statistics&rft.btitle=2012%2020th%20Signal%20Processing%20and%20Communications%20Applications%20Conference%20(SIU)&rft.au=Sahin,%20Y.&rft.date=2012-04&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2165-0608&rft.eissn=2693-3616&rft.isbn=9781467300551&rft.isbn_list=1467300551&rft_id=info:doi/10.1109/SIU.2012.6204537&rft.eisbn=146730056X&rft.eisbn_list=1467300535&rft.eisbn_list=1467300543&rft.eisbn_list=9781467300568&rft.eisbn_list=9781467300544&rft.eisbn_list=9781467300537&rft_dat=%3Cieee_6IE%3E6204537%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_62045373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6204537&rfr_iscdi=true |