Loading…
Antenna Placement Optimization for Distributed Antenna Systems
In this paper, we propose new algorithms to determine the antenna location for downlink distributed antenna systems (DASs) in single-cell and two-cell environments. We consider the composite fading channel which includes small and large scale fadings. First, for the single-cell DAS, we formulate the...
Saved in:
Published in: | IEEE transactions on wireless communications 2012-07, Vol.11 (7), p.2468-2477 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we propose new algorithms to determine the antenna location for downlink distributed antenna systems (DASs) in single-cell and two-cell environments. We consider the composite fading channel which includes small and large scale fadings. First, for the single-cell DAS, we formulate the optimization problem of distributed antenna (DA) port locations by maximizing the lower bound of the expected signal to noise ratio (SNR). In comparison to the conventional algorithm based on the squared distance criterion which requires an iterative method, our problem generates a closed form solution. Next, for the two-cell DAS, we propose a gradient ascent algorithm which determines the optimum DA locations by maximizing the lower bound of the expected signal to leakage ratio (SLR). In our work, we consider selection transmission, maximal ratio transmission and zero-forcing beamforming (ZFBF) under sum power constraint and study equal gain transmission and scaled ZFBF under per-antenna power constraint. Simulation results show that our proposed algorithms based on both the SNR and the SLR criteria offer a capacity gain over the conventional centralized antenna systems. |
---|---|
ISSN: | 1536-1276 1558-2248 |
DOI: | 10.1109/TWC.2012.051712.110670 |