Loading…
Moving-window propagation model based on an unconditionally stable FDTD method
This work introduces a finite-difference time-domain (FDTD) propagation model based on a moving window algorithm. The FDTD is evaluated by an unconditionally stable (US) method combined with a material independent (MI) perfectly matched layer (PML) formulation. Thus, the time step used in simulation...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This work introduces a finite-difference time-domain (FDTD) propagation model based on a moving window algorithm. The FDTD is evaluated by an unconditionally stable (US) method combined with a material independent (MI) perfectly matched layer (PML) formulation. Thus, the time step used in simulation is no longer restricted by the Courant-Friedrich-Levy (CFL) stability condition and the formulation can be efficiently applied to any real propagation scenario without any modification. The US-IPML formulation is tested through an analytic problem. The proposed propagation model is applied to two idealized terrain profiles involving HF and VHF signals. |
---|---|
ISSN: | 2164-3342 |
DOI: | 10.1109/EuCAP.2012.6206374 |