Loading…

Training of phase-based neurons

Complex-Valued Neural Networks are extensions of the classical Neural Networks. They have complex-valued weights, accept complex inputs and have more computational power than the classical ones. We discuss in this paper the training for Phase-Based Neurons, neural processing elements similar to Univ...

Full description

Saved in:
Bibliographic Details
Main Authors: Pavaloiu, I-B, Vasile, A., Cristea, P. D.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 525
container_issue
container_start_page 522
container_title
container_volume
creator Pavaloiu, I-B
Vasile, A.
Cristea, P. D.
description Complex-Valued Neural Networks are extensions of the classical Neural Networks. They have complex-valued weights, accept complex inputs and have more computational power than the classical ones. We discuss in this paper the training for Phase-Based Neurons, neural processing elements similar to Universal Binary Neurons, that uses as weights and bias complex numbers with unit magnitude, the phase being the only tunable parameter.
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6208193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6208193</ieee_id><sourcerecordid>6208193</sourcerecordid><originalsourceid>FETCH-ieee_primary_62081933</originalsourceid><addsrcrecordid>eNp9yb0KwjAUQOErKlg1T-BgXqBwc9P8zaL4AN1LSlMNaFoSHHx7HZxdzjecBTBnrCREJEm2WcJWNMoYEk7gCioSytRWG9oAKyX2iBa1cigrOLbZxxTTjU8jn---hLr_ZuApvPKUyh7Wo3-UwH7u4HA5t6drHUMI3Zzj0-d3pwmtcFL-vx_aniu9</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Training of phase-based neurons</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pavaloiu, I-B ; Vasile, A. ; Cristea, P. D.</creator><creatorcontrib>Pavaloiu, I-B ; Vasile, A. ; Cristea, P. D.</creatorcontrib><description>Complex-Valued Neural Networks are extensions of the classical Neural Networks. They have complex-valued weights, accept complex inputs and have more computational power than the classical ones. We discuss in this paper the training for Phase-Based Neurons, neural processing elements similar to Universal Binary Neurons, that uses as weights and bias complex numbers with unit magnitude, the phase being the only tunable parameter.</description><identifier>ISSN: 2157-8672</identifier><identifier>ISBN: 1457721910</identifier><identifier>ISBN: 9781457721915</identifier><identifier>EISBN: 9783200023284</identifier><identifier>EISBN: 3200023287</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bioinformatics ; Biological neural networks ; Complex-Valued Neural Networks ; Genomics ; Indexes ; Neurons ; Phase-Based Neuron ; Signal processing ; Training ; Universal Binary Neuron</subject><ispartof>2012 19th International Conference on Systems, Signals and Image Processing (IWSSIP), 2012, p.522-525</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6208193$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6208193$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pavaloiu, I-B</creatorcontrib><creatorcontrib>Vasile, A.</creatorcontrib><creatorcontrib>Cristea, P. D.</creatorcontrib><title>Training of phase-based neurons</title><title>2012 19th International Conference on Systems, Signals and Image Processing (IWSSIP)</title><addtitle>IWSSIP</addtitle><description>Complex-Valued Neural Networks are extensions of the classical Neural Networks. They have complex-valued weights, accept complex inputs and have more computational power than the classical ones. We discuss in this paper the training for Phase-Based Neurons, neural processing elements similar to Universal Binary Neurons, that uses as weights and bias complex numbers with unit magnitude, the phase being the only tunable parameter.</description><subject>Bioinformatics</subject><subject>Biological neural networks</subject><subject>Complex-Valued Neural Networks</subject><subject>Genomics</subject><subject>Indexes</subject><subject>Neurons</subject><subject>Phase-Based Neuron</subject><subject>Signal processing</subject><subject>Training</subject><subject>Universal Binary Neuron</subject><issn>2157-8672</issn><isbn>1457721910</isbn><isbn>9781457721915</isbn><isbn>9783200023284</isbn><isbn>3200023287</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNp9yb0KwjAUQOErKlg1T-BgXqBwc9P8zaL4AN1LSlMNaFoSHHx7HZxdzjecBTBnrCREJEm2WcJWNMoYEk7gCioSytRWG9oAKyX2iBa1cigrOLbZxxTTjU8jn---hLr_ZuApvPKUyh7Wo3-UwH7u4HA5t6drHUMI3Zzj0-d3pwmtcFL-vx_aniu9</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Pavaloiu, I-B</creator><creator>Vasile, A.</creator><creator>Cristea, P. D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201204</creationdate><title>Training of phase-based neurons</title><author>Pavaloiu, I-B ; Vasile, A. ; Cristea, P. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_62081933</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bioinformatics</topic><topic>Biological neural networks</topic><topic>Complex-Valued Neural Networks</topic><topic>Genomics</topic><topic>Indexes</topic><topic>Neurons</topic><topic>Phase-Based Neuron</topic><topic>Signal processing</topic><topic>Training</topic><topic>Universal Binary Neuron</topic><toplevel>online_resources</toplevel><creatorcontrib>Pavaloiu, I-B</creatorcontrib><creatorcontrib>Vasile, A.</creatorcontrib><creatorcontrib>Cristea, P. D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pavaloiu, I-B</au><au>Vasile, A.</au><au>Cristea, P. D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Training of phase-based neurons</atitle><btitle>2012 19th International Conference on Systems, Signals and Image Processing (IWSSIP)</btitle><stitle>IWSSIP</stitle><date>2012-04</date><risdate>2012</risdate><spage>522</spage><epage>525</epage><pages>522-525</pages><issn>2157-8672</issn><isbn>1457721910</isbn><isbn>9781457721915</isbn><eisbn>9783200023284</eisbn><eisbn>3200023287</eisbn><abstract>Complex-Valued Neural Networks are extensions of the classical Neural Networks. They have complex-valued weights, accept complex inputs and have more computational power than the classical ones. We discuss in this paper the training for Phase-Based Neurons, neural processing elements similar to Universal Binary Neurons, that uses as weights and bias complex numbers with unit magnitude, the phase being the only tunable parameter.</abstract><pub>IEEE</pub></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2157-8672
ispartof 2012 19th International Conference on Systems, Signals and Image Processing (IWSSIP), 2012, p.522-525
issn 2157-8672
language eng
recordid cdi_ieee_primary_6208193
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bioinformatics
Biological neural networks
Complex-Valued Neural Networks
Genomics
Indexes
Neurons
Phase-Based Neuron
Signal processing
Training
Universal Binary Neuron
title Training of phase-based neurons
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A43%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Training%20of%20phase-based%20neurons&rft.btitle=2012%2019th%20International%20Conference%20on%20Systems,%20Signals%20and%20Image%20Processing%20(IWSSIP)&rft.au=Pavaloiu,%20I-B&rft.date=2012-04&rft.spage=522&rft.epage=525&rft.pages=522-525&rft.issn=2157-8672&rft.isbn=1457721910&rft.isbn_list=9781457721915&rft_id=info:doi/&rft.eisbn=9783200023284&rft.eisbn_list=3200023287&rft_dat=%3Cieee_6IE%3E6208193%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_62081933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6208193&rfr_iscdi=true