Loading…
Bioimpedance Analysis for the Characterization of Breast Cancer Cells in Suspension
The bioimpedance spectroscopy (BIS) technique is potentially a useful tool to differentiate malignancy based on the variation of electrical properties presented by different tissues and cells. The different tissues and cells present variant electrical resistance and reactance when excited at differe...
Saved in:
Published in: | IEEE transactions on biomedical engineering 2012-08, Vol.59 (8), p.2321-2329 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The bioimpedance spectroscopy (BIS) technique is potentially a useful tool to differentiate malignancy based on the variation of electrical properties presented by different tissues and cells. The different tissues and cells present variant electrical resistance and reactance when excited at different frequencies. The main purpose of this area of research is to use impedance measurements over a low-frequency bandwidth ranging from 1 kHz to 3 MHz to 1) differentiate the pathological stages of cancer cells under laboratory conditions and 2) permit the extraction of electrical parameters related to cellular information for further analysis. This provides evidence to form the basis of bioimpedance measurement at the cellular level and aids the potential future development of rapid diagnostics from biopsy materials. Three cell lines, representing normal breast epithelia and different pathological stages of breast cancer, have been measured using a standard impedance analyzer driving a four-electrode chamber filled with different cell suspensions. We identify the specific BIS profile for each cell type and determine whether these can be differentiated. In addition, the electrical parameters, e.g., the intracellular conductivity, membrane capacitance/capacity, characteristic frequency, are extracted by the use of equivalent circuit models and physical models to provide details of the cell electric signatures for further analysis of cancer cell pathology. |
---|---|
ISSN: | 0018-9294 1558-2531 |
DOI: | 10.1109/TBME.2012.2202904 |