Loading…
Novel Adaptive Gravitational Search Algorithm for Fuzzy Controlled Servo Systems
This paper presents a novel adaptive Gravitational Search Algorithm (GSA) for the optimal tuning of fuzzy controlled servo systems characterized by second-order models with an integral component and variable parameters. The objective functions consist of the output sensitivity functions of the sensi...
Saved in:
Published in: | IEEE transactions on industrial informatics 2012-11, Vol.8 (4), p.791-800 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a novel adaptive Gravitational Search Algorithm (GSA) for the optimal tuning of fuzzy controlled servo systems characterized by second-order models with an integral component and variable parameters. The objective functions consist of the output sensitivity functions of the sensitivity models defined with respect to the parametric variations of the processes. The proposed adaptive GSA solves the optimization problems resulting in a new generation of Takagi-Sugeno proportional-integral fuzzy controllers (T-S PI-FCs) with a reduced time constant sensitivity. A design method for T-S PI-FCs is then proposed and experimentally validated in the representative case study of the optimal tuning of T-S PI-FCs for the position control system of a servo system. |
---|---|
ISSN: | 1551-3203 1941-0050 |
DOI: | 10.1109/TII.2012.2205393 |