Loading…
One-unit contrast functions for independent component analysis: a statistical analysis
The author (1997) introduced a large family of one-unit contrast functions to be used in independent component analysis (ICA). In this paper, the family is analyzed mathematically in the case of a finite sample. Two aspects of the estimators obtained using such contrast functions are considered: asy...
Saved in:
Main Author: | |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c151t-ed5acee2fd29fe582399f8ad945068171428e81500543a07d72bba0e282edf653 |
---|---|
cites | |
container_end_page | 397 |
container_issue | |
container_start_page | 388 |
container_title | |
container_volume | |
creator | Hyvarinen, A. |
description | The author (1997) introduced a large family of one-unit contrast functions to be used in independent component analysis (ICA). In this paper, the family is analyzed mathematically in the case of a finite sample. Two aspects of the estimators obtained using such contrast functions are considered: asymptotic variance, and robustness against outliers. An expression for the contrast function that minimizes the asymptotic variance is obtained as a function of the probability densities of the independent components. Combined with robustness considerations, these results provide strong arguments in favor of the use of contrast functions based on slowly growing functions, and against the use of kurtosis, which is the classical contrast function. |
doi_str_mv | 10.1109/NNSP.1997.622420 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_622420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>622420</ieee_id><sourcerecordid>622420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c151t-ed5acee2fd29fe582399f8ad945068171428e81500543a07d72bba0e282edf653</originalsourceid><addsrcrecordid>eNo9kE1LAzEYhIMfYFu9i6f8gV3fvNlsEm9SrAqlFfy4lnT3DUS22WWTHvrvtVS8zAwPwxyGsVsBpRBg71er97dSWKvLGrFCOGMTlNoWKNGesyloA7JCVdsLNhFgbCGVUldsmtI3AALqesK-1pGKfQyZN33Mo0uZ-31scuhj4r4feYgtDfQr8VjZDX08Jhddd0ghPXDHU3Y5pBwa1_3za3bpXZfo5s9n7HPx9DF_KZbr59f547JohBK5oFa5hgh9i9aTMiit9ca1tlJQG6FFhYaMUACqkg50q3G7dUBokFpfKzljd6fdQESbYQw7Nx42pzvkD3NwU2I</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>One-unit contrast functions for independent component analysis: a statistical analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hyvarinen, A.</creator><creatorcontrib>Hyvarinen, A.</creatorcontrib><description>The author (1997) introduced a large family of one-unit contrast functions to be used in independent component analysis (ICA). In this paper, the family is analyzed mathematically in the case of a finite sample. Two aspects of the estimators obtained using such contrast functions are considered: asymptotic variance, and robustness against outliers. An expression for the contrast function that minimizes the asymptotic variance is obtained as a function of the probability densities of the independent components. Combined with robustness considerations, these results provide strong arguments in favor of the use of contrast functions based on slowly growing functions, and against the use of kurtosis, which is the classical contrast function.</description><identifier>ISSN: 1089-3555</identifier><identifier>ISBN: 0780342569</identifier><identifier>ISBN: 9780780342569</identifier><identifier>EISSN: 2379-2329</identifier><identifier>DOI: 10.1109/NNSP.1997.622420</identifier><language>eng</language><publisher>IEEE</publisher><subject>Blind source separation ; Covariance matrix ; Gaussian noise ; Independent component analysis ; Information science ; Probability ; Robustness ; Signal processing ; Statistical analysis ; Vectors</subject><ispartof>Neural Networks for Signal Processing VII. Proceedings of the 1997 IEEE Signal Processing Society Workshop, 1997, p.388-397</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c151t-ed5acee2fd29fe582399f8ad945068171428e81500543a07d72bba0e282edf653</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/622420$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,4036,4037,27906,54536,54901,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/622420$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hyvarinen, A.</creatorcontrib><title>One-unit contrast functions for independent component analysis: a statistical analysis</title><title>Neural Networks for Signal Processing VII. Proceedings of the 1997 IEEE Signal Processing Society Workshop</title><addtitle>NNSP</addtitle><description>The author (1997) introduced a large family of one-unit contrast functions to be used in independent component analysis (ICA). In this paper, the family is analyzed mathematically in the case of a finite sample. Two aspects of the estimators obtained using such contrast functions are considered: asymptotic variance, and robustness against outliers. An expression for the contrast function that minimizes the asymptotic variance is obtained as a function of the probability densities of the independent components. Combined with robustness considerations, these results provide strong arguments in favor of the use of contrast functions based on slowly growing functions, and against the use of kurtosis, which is the classical contrast function.</description><subject>Blind source separation</subject><subject>Covariance matrix</subject><subject>Gaussian noise</subject><subject>Independent component analysis</subject><subject>Information science</subject><subject>Probability</subject><subject>Robustness</subject><subject>Signal processing</subject><subject>Statistical analysis</subject><subject>Vectors</subject><issn>1089-3555</issn><issn>2379-2329</issn><isbn>0780342569</isbn><isbn>9780780342569</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1997</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9kE1LAzEYhIMfYFu9i6f8gV3fvNlsEm9SrAqlFfy4lnT3DUS22WWTHvrvtVS8zAwPwxyGsVsBpRBg71er97dSWKvLGrFCOGMTlNoWKNGesyloA7JCVdsLNhFgbCGVUldsmtI3AALqesK-1pGKfQyZN33Mo0uZ-31scuhj4r4feYgtDfQr8VjZDX08Jhddd0ghPXDHU3Y5pBwa1_3za3bpXZfo5s9n7HPx9DF_KZbr59f547JohBK5oFa5hgh9i9aTMiit9ca1tlJQG6FFhYaMUACqkg50q3G7dUBokFpfKzljd6fdQESbYQw7Nx42pzvkD3NwU2I</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>Hyvarinen, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1997</creationdate><title>One-unit contrast functions for independent component analysis: a statistical analysis</title><author>Hyvarinen, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c151t-ed5acee2fd29fe582399f8ad945068171428e81500543a07d72bba0e282edf653</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Blind source separation</topic><topic>Covariance matrix</topic><topic>Gaussian noise</topic><topic>Independent component analysis</topic><topic>Information science</topic><topic>Probability</topic><topic>Robustness</topic><topic>Signal processing</topic><topic>Statistical analysis</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Hyvarinen, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hyvarinen, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>One-unit contrast functions for independent component analysis: a statistical analysis</atitle><btitle>Neural Networks for Signal Processing VII. Proceedings of the 1997 IEEE Signal Processing Society Workshop</btitle><stitle>NNSP</stitle><date>1997</date><risdate>1997</risdate><spage>388</spage><epage>397</epage><pages>388-397</pages><issn>1089-3555</issn><eissn>2379-2329</eissn><isbn>0780342569</isbn><isbn>9780780342569</isbn><abstract>The author (1997) introduced a large family of one-unit contrast functions to be used in independent component analysis (ICA). In this paper, the family is analyzed mathematically in the case of a finite sample. Two aspects of the estimators obtained using such contrast functions are considered: asymptotic variance, and robustness against outliers. An expression for the contrast function that minimizes the asymptotic variance is obtained as a function of the probability densities of the independent components. Combined with robustness considerations, these results provide strong arguments in favor of the use of contrast functions based on slowly growing functions, and against the use of kurtosis, which is the classical contrast function.</abstract><pub>IEEE</pub><doi>10.1109/NNSP.1997.622420</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-3555 |
ispartof | Neural Networks for Signal Processing VII. Proceedings of the 1997 IEEE Signal Processing Society Workshop, 1997, p.388-397 |
issn | 1089-3555 2379-2329 |
language | eng |
recordid | cdi_ieee_primary_622420 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Blind source separation Covariance matrix Gaussian noise Independent component analysis Information science Probability Robustness Signal processing Statistical analysis Vectors |
title | One-unit contrast functions for independent component analysis: a statistical analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A29%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=One-unit%20contrast%20functions%20for%20independent%20component%20analysis:%20a%20statistical%20analysis&rft.btitle=Neural%20Networks%20for%20Signal%20Processing%20VII.%20Proceedings%20of%20the%201997%20IEEE%20Signal%20Processing%20Society%20Workshop&rft.au=Hyvarinen,%20A.&rft.date=1997&rft.spage=388&rft.epage=397&rft.pages=388-397&rft.issn=1089-3555&rft.eissn=2379-2329&rft.isbn=0780342569&rft.isbn_list=9780780342569&rft_id=info:doi/10.1109/NNSP.1997.622420&rft_dat=%3Cieee_6IE%3E622420%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c151t-ed5acee2fd29fe582399f8ad945068171428e81500543a07d72bba0e282edf653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=622420&rfr_iscdi=true |