Loading…

Navigation Functions for everywhere partially sufficiently curved worlds

We extend Navigation Functions (NF) to worlds of more general geometry and topology. This is achieved without the need for diffeomorphisms, by direct definition in the geometrically complicated configuration space. Every obstacle boundary point should be partially sufficiently curved. This requires...

Full description

Saved in:
Bibliographic Details
Main Authors: Filippidis, I. F., Kyriakopoulos, K. J.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2120
container_issue
container_start_page 2115
container_title
container_volume
creator Filippidis, I. F.
Kyriakopoulos, K. J.
description We extend Navigation Functions (NF) to worlds of more general geometry and topology. This is achieved without the need for diffeomorphisms, by direct definition in the geometrically complicated configuration space. Every obstacle boundary point should be partially sufficiently curved. This requires that at least one principal normal curvature be sufficient. A normal curvature is termed sufficient when the tangent sphere with diameter the associated curvature radius is a subset of the obstacle. Examples include ellipses with bounded eccentricity, tori, cylinders, one-sheet hyperboloids and others. Our proof establishes the existence of appropriate tuning for this purpose. Direct application to geometrically complicated cases is illustrated through nontrivial simulations.
doi_str_mv 10.1109/ICRA.2012.6225105
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6225105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6225105</ieee_id><sourcerecordid>6225105</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6d510a1b9023420c50da8027afeb9fe4409314b3576d63d15cdc9d056ef6780e3</originalsourceid><addsrcrecordid>eNpVUNtKw0AUXG9grP0A8SU_kHj2nn0swdpCURAF38o2e1ZXYlM2l9K_b8S--DQzDDMMQ8gdhZxSMA_L8nWWM6AsV4xJCvKMTI0uqFCaUwFCnZOESa0zKPTHxT-Pm0uSjAnIhGbmmty07TcAcK5UQhbPdgiftgvNNp332-qXtKlvYooDxsP-CyOmOxu7YOv6kLa996EKuO1GUfVxQJfum1i79pZceVu3OD3hhLzPH9_KRbZ6eVqWs1UWqJZdptw43tKNAcYFg0qCswUwbT1ujEchwIybN1xq5RR3VFauMg6kQq90Acgn5P6vNyDiehfDj42H9ekUfgSrO1Hn</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Navigation Functions for everywhere partially sufficiently curved worlds</title><source>IEEE Xplore All Conference Series</source><creator>Filippidis, I. F. ; Kyriakopoulos, K. J.</creator><creatorcontrib>Filippidis, I. F. ; Kyriakopoulos, K. J.</creatorcontrib><description>We extend Navigation Functions (NF) to worlds of more general geometry and topology. This is achieved without the need for diffeomorphisms, by direct definition in the geometrically complicated configuration space. Every obstacle boundary point should be partially sufficiently curved. This requires that at least one principal normal curvature be sufficient. A normal curvature is termed sufficient when the tangent sphere with diameter the associated curvature radius is a subset of the obstacle. Examples include ellipses with bounded eccentricity, tori, cylinders, one-sheet hyperboloids and others. Our proof establishes the existence of appropriate tuning for this purpose. Direct application to geometrically complicated cases is illustrated through nontrivial simulations.</description><identifier>ISSN: 1050-4729</identifier><identifier>ISBN: 9781467314039</identifier><identifier>ISBN: 146731403X</identifier><identifier>EISSN: 2577-087X</identifier><identifier>EISBN: 9781467314046</identifier><identifier>EISBN: 1467315788</identifier><identifier>EISBN: 1467314056</identifier><identifier>EISBN: 9781467314053</identifier><identifier>EISBN: 9781467315784</identifier><identifier>EISBN: 1467314048</identifier><identifier>DOI: 10.1109/ICRA.2012.6225105</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bismuth ; Eigenvalues and eigenfunctions ; Geometry ; Level set ; Navigation ; Noise measurement ; Planning</subject><ispartof>2012 IEEE International Conference on Robotics and Automation, 2012, p.2115-2120</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6225105$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6225105$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Filippidis, I. F.</creatorcontrib><creatorcontrib>Kyriakopoulos, K. J.</creatorcontrib><title>Navigation Functions for everywhere partially sufficiently curved worlds</title><title>2012 IEEE International Conference on Robotics and Automation</title><addtitle>ICRA</addtitle><description>We extend Navigation Functions (NF) to worlds of more general geometry and topology. This is achieved without the need for diffeomorphisms, by direct definition in the geometrically complicated configuration space. Every obstacle boundary point should be partially sufficiently curved. This requires that at least one principal normal curvature be sufficient. A normal curvature is termed sufficient when the tangent sphere with diameter the associated curvature radius is a subset of the obstacle. Examples include ellipses with bounded eccentricity, tori, cylinders, one-sheet hyperboloids and others. Our proof establishes the existence of appropriate tuning for this purpose. Direct application to geometrically complicated cases is illustrated through nontrivial simulations.</description><subject>Bismuth</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Geometry</subject><subject>Level set</subject><subject>Navigation</subject><subject>Noise measurement</subject><subject>Planning</subject><issn>1050-4729</issn><issn>2577-087X</issn><isbn>9781467314039</isbn><isbn>146731403X</isbn><isbn>9781467314046</isbn><isbn>1467315788</isbn><isbn>1467314056</isbn><isbn>9781467314053</isbn><isbn>9781467315784</isbn><isbn>1467314048</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVUNtKw0AUXG9grP0A8SU_kHj2nn0swdpCURAF38o2e1ZXYlM2l9K_b8S--DQzDDMMQ8gdhZxSMA_L8nWWM6AsV4xJCvKMTI0uqFCaUwFCnZOESa0zKPTHxT-Pm0uSjAnIhGbmmty07TcAcK5UQhbPdgiftgvNNp332-qXtKlvYooDxsP-CyOmOxu7YOv6kLa996EKuO1GUfVxQJfum1i79pZceVu3OD3hhLzPH9_KRbZ6eVqWs1UWqJZdptw43tKNAcYFg0qCswUwbT1ujEchwIybN1xq5RR3VFauMg6kQq90Acgn5P6vNyDiehfDj42H9ekUfgSrO1Hn</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Filippidis, I. F.</creator><creator>Kyriakopoulos, K. J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201205</creationdate><title>Navigation Functions for everywhere partially sufficiently curved worlds</title><author>Filippidis, I. F. ; Kyriakopoulos, K. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6d510a1b9023420c50da8027afeb9fe4409314b3576d63d15cdc9d056ef6780e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bismuth</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Geometry</topic><topic>Level set</topic><topic>Navigation</topic><topic>Noise measurement</topic><topic>Planning</topic><toplevel>online_resources</toplevel><creatorcontrib>Filippidis, I. F.</creatorcontrib><creatorcontrib>Kyriakopoulos, K. J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Filippidis, I. F.</au><au>Kyriakopoulos, K. J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Navigation Functions for everywhere partially sufficiently curved worlds</atitle><btitle>2012 IEEE International Conference on Robotics and Automation</btitle><stitle>ICRA</stitle><date>2012-05</date><risdate>2012</risdate><spage>2115</spage><epage>2120</epage><pages>2115-2120</pages><issn>1050-4729</issn><eissn>2577-087X</eissn><isbn>9781467314039</isbn><isbn>146731403X</isbn><eisbn>9781467314046</eisbn><eisbn>1467315788</eisbn><eisbn>1467314056</eisbn><eisbn>9781467314053</eisbn><eisbn>9781467315784</eisbn><eisbn>1467314048</eisbn><abstract>We extend Navigation Functions (NF) to worlds of more general geometry and topology. This is achieved without the need for diffeomorphisms, by direct definition in the geometrically complicated configuration space. Every obstacle boundary point should be partially sufficiently curved. This requires that at least one principal normal curvature be sufficient. A normal curvature is termed sufficient when the tangent sphere with diameter the associated curvature radius is a subset of the obstacle. Examples include ellipses with bounded eccentricity, tori, cylinders, one-sheet hyperboloids and others. Our proof establishes the existence of appropriate tuning for this purpose. Direct application to geometrically complicated cases is illustrated through nontrivial simulations.</abstract><pub>IEEE</pub><doi>10.1109/ICRA.2012.6225105</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1050-4729
ispartof 2012 IEEE International Conference on Robotics and Automation, 2012, p.2115-2120
issn 1050-4729
2577-087X
language eng
recordid cdi_ieee_primary_6225105
source IEEE Xplore All Conference Series
subjects Bismuth
Eigenvalues and eigenfunctions
Geometry
Level set
Navigation
Noise measurement
Planning
title Navigation Functions for everywhere partially sufficiently curved worlds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A26%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Navigation%20Functions%20for%20everywhere%20partially%20sufficiently%20curved%20worlds&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation&rft.au=Filippidis,%20I.%20F.&rft.date=2012-05&rft.spage=2115&rft.epage=2120&rft.pages=2115-2120&rft.issn=1050-4729&rft.eissn=2577-087X&rft.isbn=9781467314039&rft.isbn_list=146731403X&rft_id=info:doi/10.1109/ICRA.2012.6225105&rft.eisbn=9781467314046&rft.eisbn_list=1467315788&rft.eisbn_list=1467314056&rft.eisbn_list=9781467314053&rft.eisbn_list=9781467315784&rft.eisbn_list=1467314048&rft_dat=%3Cieee_CHZPO%3E6225105%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-6d510a1b9023420c50da8027afeb9fe4409314b3576d63d15cdc9d056ef6780e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6225105&rfr_iscdi=true