Loading…
Navigation Functions for everywhere partially sufficiently curved worlds
We extend Navigation Functions (NF) to worlds of more general geometry and topology. This is achieved without the need for diffeomorphisms, by direct definition in the geometrically complicated configuration space. Every obstacle boundary point should be partially sufficiently curved. This requires...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2120 |
container_issue | |
container_start_page | 2115 |
container_title | |
container_volume | |
creator | Filippidis, I. F. Kyriakopoulos, K. J. |
description | We extend Navigation Functions (NF) to worlds of more general geometry and topology. This is achieved without the need for diffeomorphisms, by direct definition in the geometrically complicated configuration space. Every obstacle boundary point should be partially sufficiently curved. This requires that at least one principal normal curvature be sufficient. A normal curvature is termed sufficient when the tangent sphere with diameter the associated curvature radius is a subset of the obstacle. Examples include ellipses with bounded eccentricity, tori, cylinders, one-sheet hyperboloids and others. Our proof establishes the existence of appropriate tuning for this purpose. Direct application to geometrically complicated cases is illustrated through nontrivial simulations. |
doi_str_mv | 10.1109/ICRA.2012.6225105 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6225105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6225105</ieee_id><sourcerecordid>6225105</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6d510a1b9023420c50da8027afeb9fe4409314b3576d63d15cdc9d056ef6780e3</originalsourceid><addsrcrecordid>eNpVUNtKw0AUXG9grP0A8SU_kHj2nn0swdpCURAF38o2e1ZXYlM2l9K_b8S--DQzDDMMQ8gdhZxSMA_L8nWWM6AsV4xJCvKMTI0uqFCaUwFCnZOESa0zKPTHxT-Pm0uSjAnIhGbmmty07TcAcK5UQhbPdgiftgvNNp332-qXtKlvYooDxsP-CyOmOxu7YOv6kLa996EKuO1GUfVxQJfum1i79pZceVu3OD3hhLzPH9_KRbZ6eVqWs1UWqJZdptw43tKNAcYFg0qCswUwbT1ujEchwIybN1xq5RR3VFauMg6kQq90Acgn5P6vNyDiehfDj42H9ekUfgSrO1Hn</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Navigation Functions for everywhere partially sufficiently curved worlds</title><source>IEEE Xplore All Conference Series</source><creator>Filippidis, I. F. ; Kyriakopoulos, K. J.</creator><creatorcontrib>Filippidis, I. F. ; Kyriakopoulos, K. J.</creatorcontrib><description>We extend Navigation Functions (NF) to worlds of more general geometry and topology. This is achieved without the need for diffeomorphisms, by direct definition in the geometrically complicated configuration space. Every obstacle boundary point should be partially sufficiently curved. This requires that at least one principal normal curvature be sufficient. A normal curvature is termed sufficient when the tangent sphere with diameter the associated curvature radius is a subset of the obstacle. Examples include ellipses with bounded eccentricity, tori, cylinders, one-sheet hyperboloids and others. Our proof establishes the existence of appropriate tuning for this purpose. Direct application to geometrically complicated cases is illustrated through nontrivial simulations.</description><identifier>ISSN: 1050-4729</identifier><identifier>ISBN: 9781467314039</identifier><identifier>ISBN: 146731403X</identifier><identifier>EISSN: 2577-087X</identifier><identifier>EISBN: 9781467314046</identifier><identifier>EISBN: 1467315788</identifier><identifier>EISBN: 1467314056</identifier><identifier>EISBN: 9781467314053</identifier><identifier>EISBN: 9781467315784</identifier><identifier>EISBN: 1467314048</identifier><identifier>DOI: 10.1109/ICRA.2012.6225105</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bismuth ; Eigenvalues and eigenfunctions ; Geometry ; Level set ; Navigation ; Noise measurement ; Planning</subject><ispartof>2012 IEEE International Conference on Robotics and Automation, 2012, p.2115-2120</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6225105$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6225105$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Filippidis, I. F.</creatorcontrib><creatorcontrib>Kyriakopoulos, K. J.</creatorcontrib><title>Navigation Functions for everywhere partially sufficiently curved worlds</title><title>2012 IEEE International Conference on Robotics and Automation</title><addtitle>ICRA</addtitle><description>We extend Navigation Functions (NF) to worlds of more general geometry and topology. This is achieved without the need for diffeomorphisms, by direct definition in the geometrically complicated configuration space. Every obstacle boundary point should be partially sufficiently curved. This requires that at least one principal normal curvature be sufficient. A normal curvature is termed sufficient when the tangent sphere with diameter the associated curvature radius is a subset of the obstacle. Examples include ellipses with bounded eccentricity, tori, cylinders, one-sheet hyperboloids and others. Our proof establishes the existence of appropriate tuning for this purpose. Direct application to geometrically complicated cases is illustrated through nontrivial simulations.</description><subject>Bismuth</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Geometry</subject><subject>Level set</subject><subject>Navigation</subject><subject>Noise measurement</subject><subject>Planning</subject><issn>1050-4729</issn><issn>2577-087X</issn><isbn>9781467314039</isbn><isbn>146731403X</isbn><isbn>9781467314046</isbn><isbn>1467315788</isbn><isbn>1467314056</isbn><isbn>9781467314053</isbn><isbn>9781467315784</isbn><isbn>1467314048</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVUNtKw0AUXG9grP0A8SU_kHj2nn0swdpCURAF38o2e1ZXYlM2l9K_b8S--DQzDDMMQ8gdhZxSMA_L8nWWM6AsV4xJCvKMTI0uqFCaUwFCnZOESa0zKPTHxT-Pm0uSjAnIhGbmmty07TcAcK5UQhbPdgiftgvNNp332-qXtKlvYooDxsP-CyOmOxu7YOv6kLa996EKuO1GUfVxQJfum1i79pZceVu3OD3hhLzPH9_KRbZ6eVqWs1UWqJZdptw43tKNAcYFg0qCswUwbT1ujEchwIybN1xq5RR3VFauMg6kQq90Acgn5P6vNyDiehfDj42H9ekUfgSrO1Hn</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Filippidis, I. F.</creator><creator>Kyriakopoulos, K. J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201205</creationdate><title>Navigation Functions for everywhere partially sufficiently curved worlds</title><author>Filippidis, I. F. ; Kyriakopoulos, K. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6d510a1b9023420c50da8027afeb9fe4409314b3576d63d15cdc9d056ef6780e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bismuth</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Geometry</topic><topic>Level set</topic><topic>Navigation</topic><topic>Noise measurement</topic><topic>Planning</topic><toplevel>online_resources</toplevel><creatorcontrib>Filippidis, I. F.</creatorcontrib><creatorcontrib>Kyriakopoulos, K. J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Filippidis, I. F.</au><au>Kyriakopoulos, K. J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Navigation Functions for everywhere partially sufficiently curved worlds</atitle><btitle>2012 IEEE International Conference on Robotics and Automation</btitle><stitle>ICRA</stitle><date>2012-05</date><risdate>2012</risdate><spage>2115</spage><epage>2120</epage><pages>2115-2120</pages><issn>1050-4729</issn><eissn>2577-087X</eissn><isbn>9781467314039</isbn><isbn>146731403X</isbn><eisbn>9781467314046</eisbn><eisbn>1467315788</eisbn><eisbn>1467314056</eisbn><eisbn>9781467314053</eisbn><eisbn>9781467315784</eisbn><eisbn>1467314048</eisbn><abstract>We extend Navigation Functions (NF) to worlds of more general geometry and topology. This is achieved without the need for diffeomorphisms, by direct definition in the geometrically complicated configuration space. Every obstacle boundary point should be partially sufficiently curved. This requires that at least one principal normal curvature be sufficient. A normal curvature is termed sufficient when the tangent sphere with diameter the associated curvature radius is a subset of the obstacle. Examples include ellipses with bounded eccentricity, tori, cylinders, one-sheet hyperboloids and others. Our proof establishes the existence of appropriate tuning for this purpose. Direct application to geometrically complicated cases is illustrated through nontrivial simulations.</abstract><pub>IEEE</pub><doi>10.1109/ICRA.2012.6225105</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1050-4729 |
ispartof | 2012 IEEE International Conference on Robotics and Automation, 2012, p.2115-2120 |
issn | 1050-4729 2577-087X |
language | eng |
recordid | cdi_ieee_primary_6225105 |
source | IEEE Xplore All Conference Series |
subjects | Bismuth Eigenvalues and eigenfunctions Geometry Level set Navigation Noise measurement Planning |
title | Navigation Functions for everywhere partially sufficiently curved worlds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A26%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Navigation%20Functions%20for%20everywhere%20partially%20sufficiently%20curved%20worlds&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation&rft.au=Filippidis,%20I.%20F.&rft.date=2012-05&rft.spage=2115&rft.epage=2120&rft.pages=2115-2120&rft.issn=1050-4729&rft.eissn=2577-087X&rft.isbn=9781467314039&rft.isbn_list=146731403X&rft_id=info:doi/10.1109/ICRA.2012.6225105&rft.eisbn=9781467314046&rft.eisbn_list=1467315788&rft.eisbn_list=1467314056&rft.eisbn_list=9781467314053&rft.eisbn_list=9781467315784&rft.eisbn_list=1467314048&rft_dat=%3Cieee_CHZPO%3E6225105%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-6d510a1b9023420c50da8027afeb9fe4409314b3576d63d15cdc9d056ef6780e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6225105&rfr_iscdi=true |