Loading…
LARS: A Location-Aware Recommender System
This paper proposes LARS, a location-aware recommender system that uses location-based ratings to produce recommendations. Traditional recommender systems do not consider spatial properties of users nor items, LARS, on the other hand, supports a taxonomy of three novel classes of location-based rati...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 461 |
container_issue | |
container_start_page | 450 |
container_title | |
container_volume | |
creator | Levandoski, J. J. Sarwat, M. Eldawy, A. Mokbel, M. F. |
description | This paper proposes LARS, a location-aware recommender system that uses location-based ratings to produce recommendations. Traditional recommender systems do not consider spatial properties of users nor items, LARS, on the other hand, supports a taxonomy of three novel classes of location-based ratings, namely, spatial ratings for non-spatial items, non-spatial ratings for spatial items, and spatial ratings for spatial items. LARS exploits user rating locations through user partitioning, a technique that influences recommendations with ratings spatially close to querying users in a manner that maximizes system scalability while not sacrificing recommendation quality. LARS exploits item locations using travel penalty, a technique that favors recommendation candidates closer in travel distance to querying users in a way that avoids exhaustive access to all spatial items. LARS can apply these techniques separately, or in concert, depending on the type of location-based rating available. Experimental evidence using large-scale real-world data from both the Foursquare location-based social network and the Movie Lens movie recommendation system reveals that LARS is efficient, scalable, and capable of producing recommendations twice as accurate compared to existing recommendation approaches. |
doi_str_mv | 10.1109/ICDE.2012.54 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6228105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6228105</ieee_id><sourcerecordid>6228105</sourcerecordid><originalsourceid>FETCH-LOGICAL-i213t-403277f269d513a6cfb3e8a0c240913046d82a8ae99679d5c9ab1129a93ef9b43</originalsourceid><addsrcrecordid>eNotjE1Lw0AUANcvsNbcvHnJ1cPG995-Pm8hVi0EhFbBW9kkG4iYRpKA9N9b0LnMZRghbhAyROD7dfG4ygiQMqNPxBU4y0Y77fypWJByRgLZjzORsPOorVMAmvBcLBCsklZ5uhTJNH3CEdaIBhbirsw324c0T8uhDnM37GX-E8aYbmI99H3cN3FMt4dpjv21uGjD1xSTfy_F-9PqrXiR5evzushL2RGqWWpQ5FxLlhuDKti6rVT0AWrSwKhA28ZT8CEyW3dsag4VInFgFVuutFqK279vF2PcfY9dH8bDzhJ5BKN-ARsMQsU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>LARS: A Location-Aware Recommender System</title><source>IEEE Xplore All Conference Series</source><creator>Levandoski, J. J. ; Sarwat, M. ; Eldawy, A. ; Mokbel, M. F.</creator><creatorcontrib>Levandoski, J. J. ; Sarwat, M. ; Eldawy, A. ; Mokbel, M. F.</creatorcontrib><description>This paper proposes LARS, a location-aware recommender system that uses location-based ratings to produce recommendations. Traditional recommender systems do not consider spatial properties of users nor items, LARS, on the other hand, supports a taxonomy of three novel classes of location-based ratings, namely, spatial ratings for non-spatial items, non-spatial ratings for spatial items, and spatial ratings for spatial items. LARS exploits user rating locations through user partitioning, a technique that influences recommendations with ratings spatially close to querying users in a manner that maximizes system scalability while not sacrificing recommendation quality. LARS exploits item locations using travel penalty, a technique that favors recommendation candidates closer in travel distance to querying users in a way that avoids exhaustive access to all spatial items. LARS can apply these techniques separately, or in concert, depending on the type of location-based rating available. Experimental evidence using large-scale real-world data from both the Foursquare location-based social network and the Movie Lens movie recommendation system reveals that LARS is efficient, scalable, and capable of producing recommendations twice as accurate compared to existing recommendation approaches.</description><identifier>ISSN: 1063-6382</identifier><identifier>ISBN: 9781467300421</identifier><identifier>ISBN: 146730042X</identifier><identifier>EISSN: 2375-026X</identifier><identifier>EISBN: 0769547478</identifier><identifier>EISBN: 9780769547473</identifier><identifier>DOI: 10.1109/ICDE.2012.54</identifier><language>eng</language><publisher>IEEE</publisher><subject>Collaboration ; Computational modeling ; Maintenance engineering ; Merging ; Motion pictures ; Recommender systems ; Scalability</subject><ispartof>2012 IEEE 28th International Conference on Data Engineering, 2012, p.450-461</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6228105$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6228105$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Levandoski, J. J.</creatorcontrib><creatorcontrib>Sarwat, M.</creatorcontrib><creatorcontrib>Eldawy, A.</creatorcontrib><creatorcontrib>Mokbel, M. F.</creatorcontrib><title>LARS: A Location-Aware Recommender System</title><title>2012 IEEE 28th International Conference on Data Engineering</title><addtitle>icde</addtitle><description>This paper proposes LARS, a location-aware recommender system that uses location-based ratings to produce recommendations. Traditional recommender systems do not consider spatial properties of users nor items, LARS, on the other hand, supports a taxonomy of three novel classes of location-based ratings, namely, spatial ratings for non-spatial items, non-spatial ratings for spatial items, and spatial ratings for spatial items. LARS exploits user rating locations through user partitioning, a technique that influences recommendations with ratings spatially close to querying users in a manner that maximizes system scalability while not sacrificing recommendation quality. LARS exploits item locations using travel penalty, a technique that favors recommendation candidates closer in travel distance to querying users in a way that avoids exhaustive access to all spatial items. LARS can apply these techniques separately, or in concert, depending on the type of location-based rating available. Experimental evidence using large-scale real-world data from both the Foursquare location-based social network and the Movie Lens movie recommendation system reveals that LARS is efficient, scalable, and capable of producing recommendations twice as accurate compared to existing recommendation approaches.</description><subject>Collaboration</subject><subject>Computational modeling</subject><subject>Maintenance engineering</subject><subject>Merging</subject><subject>Motion pictures</subject><subject>Recommender systems</subject><subject>Scalability</subject><issn>1063-6382</issn><issn>2375-026X</issn><isbn>9781467300421</isbn><isbn>146730042X</isbn><isbn>0769547478</isbn><isbn>9780769547473</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjE1Lw0AUANcvsNbcvHnJ1cPG995-Pm8hVi0EhFbBW9kkG4iYRpKA9N9b0LnMZRghbhAyROD7dfG4ygiQMqNPxBU4y0Y77fypWJByRgLZjzORsPOorVMAmvBcLBCsklZ5uhTJNH3CEdaIBhbirsw324c0T8uhDnM37GX-E8aYbmI99H3cN3FMt4dpjv21uGjD1xSTfy_F-9PqrXiR5evzushL2RGqWWpQ5FxLlhuDKti6rVT0AWrSwKhA28ZT8CEyW3dsag4VInFgFVuutFqK279vF2PcfY9dH8bDzhJ5BKN-ARsMQsU</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Levandoski, J. J.</creator><creator>Sarwat, M.</creator><creator>Eldawy, A.</creator><creator>Mokbel, M. F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20120101</creationdate><title>LARS: A Location-Aware Recommender System</title><author>Levandoski, J. J. ; Sarwat, M. ; Eldawy, A. ; Mokbel, M. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i213t-403277f269d513a6cfb3e8a0c240913046d82a8ae99679d5c9ab1129a93ef9b43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Collaboration</topic><topic>Computational modeling</topic><topic>Maintenance engineering</topic><topic>Merging</topic><topic>Motion pictures</topic><topic>Recommender systems</topic><topic>Scalability</topic><toplevel>online_resources</toplevel><creatorcontrib>Levandoski, J. J.</creatorcontrib><creatorcontrib>Sarwat, M.</creatorcontrib><creatorcontrib>Eldawy, A.</creatorcontrib><creatorcontrib>Mokbel, M. F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Levandoski, J. J.</au><au>Sarwat, M.</au><au>Eldawy, A.</au><au>Mokbel, M. F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>LARS: A Location-Aware Recommender System</atitle><btitle>2012 IEEE 28th International Conference on Data Engineering</btitle><stitle>icde</stitle><date>2012-01-01</date><risdate>2012</risdate><spage>450</spage><epage>461</epage><pages>450-461</pages><issn>1063-6382</issn><eissn>2375-026X</eissn><isbn>9781467300421</isbn><isbn>146730042X</isbn><eisbn>0769547478</eisbn><eisbn>9780769547473</eisbn><abstract>This paper proposes LARS, a location-aware recommender system that uses location-based ratings to produce recommendations. Traditional recommender systems do not consider spatial properties of users nor items, LARS, on the other hand, supports a taxonomy of three novel classes of location-based ratings, namely, spatial ratings for non-spatial items, non-spatial ratings for spatial items, and spatial ratings for spatial items. LARS exploits user rating locations through user partitioning, a technique that influences recommendations with ratings spatially close to querying users in a manner that maximizes system scalability while not sacrificing recommendation quality. LARS exploits item locations using travel penalty, a technique that favors recommendation candidates closer in travel distance to querying users in a way that avoids exhaustive access to all spatial items. LARS can apply these techniques separately, or in concert, depending on the type of location-based rating available. Experimental evidence using large-scale real-world data from both the Foursquare location-based social network and the Movie Lens movie recommendation system reveals that LARS is efficient, scalable, and capable of producing recommendations twice as accurate compared to existing recommendation approaches.</abstract><pub>IEEE</pub><doi>10.1109/ICDE.2012.54</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6382 |
ispartof | 2012 IEEE 28th International Conference on Data Engineering, 2012, p.450-461 |
issn | 1063-6382 2375-026X |
language | eng |
recordid | cdi_ieee_primary_6228105 |
source | IEEE Xplore All Conference Series |
subjects | Collaboration Computational modeling Maintenance engineering Merging Motion pictures Recommender systems Scalability |
title | LARS: A Location-Aware Recommender System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A05%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=LARS:%20A%20Location-Aware%20Recommender%20System&rft.btitle=2012%20IEEE%2028th%20International%20Conference%20on%20Data%20Engineering&rft.au=Levandoski,%20J.%20J.&rft.date=2012-01-01&rft.spage=450&rft.epage=461&rft.pages=450-461&rft.issn=1063-6382&rft.eissn=2375-026X&rft.isbn=9781467300421&rft.isbn_list=146730042X&rft_id=info:doi/10.1109/ICDE.2012.54&rft.eisbn=0769547478&rft.eisbn_list=9780769547473&rft_dat=%3Cieee_CHZPO%3E6228105%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i213t-403277f269d513a6cfb3e8a0c240913046d82a8ae99679d5c9ab1129a93ef9b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6228105&rfr_iscdi=true |