Loading…
Multidimensional Analysis of Atypical Events in Cyber-Physical Data
A Cyber-Physical System (CPS) integrates physical devices (e.g., sensors, cameras) with cyber (or informational) components to form a situation-integrated analytical system that may respond intelligently to dynamic changes of the real-world situations. CPS claims many promising applications, such as...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1036 |
container_issue | |
container_start_page | 1025 |
container_title | |
container_volume | |
creator | Lu-An Tang Xiao Yu Sangkyum Kim Jiawei Han Wen-Chih Peng Yizhou Sun Gonzalez, H. Seith, S. |
description | A Cyber-Physical System (CPS) integrates physical devices (e.g., sensors, cameras) with cyber (or informational) components to form a situation-integrated analytical system that may respond intelligently to dynamic changes of the real-world situations. CPS claims many promising applications, such as traffic observation, battlefield surveillance and sensor-network based monitoring. One important research topic in CPS is about the atypical event analysis, i.e., retrieving the events from large amount of data and analyzing them with spatial, temporal and other multi-dimensional information. Many traditional approaches are not feasible for such analysis since they use numeric measures and cannot describe the complex atypical events. In this study, we propose a new model of atypical cluster to effectively represent those events and efficiently retrieve them from massive data. The micro-cluster is designed to summarize individual events, and the macro-cluster is used to integrate the information from multiple event. To facilitate scalable, flexible and online analysis, the concept of significant cluster is defined and a guided clustering algorithm is proposed to retrieve significant clusters in an efficient manner. We conduct experiments on real datasets with the size of more than 50 GB, the results show that the proposed method can provide more accurate information with only 15% to 20% time cost of the baselines. |
doi_str_mv | 10.1109/ICDE.2012.32 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6228153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6228153</ieee_id><sourcerecordid>6228153</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-bea4eab6e28a143022d484267c3d431ef163e8b6e0bcf2c30a44967dc643e48e3</originalsourceid><addsrcrecordid>eNotjE1Lw0AYhNcvsNbevHnJH0jd9yO7m2NIqxYqelDwVjbJG1xp09KNQv69EZ3DDMwzjFI3oOcAOr9blYvlHDXgnPBEXWlr8owtW3eqJkg2SzWa9zM1y60DNpa0ZoRzNQFtKDXk8FLNYvzUo3IGyPRElU9f2z40YSddDPvOb5NitCGGmOzbpOiHQ6jHcvktXR-T0CXlUMkxffkYJ79g4Xt_rS5av40y-8-pertfvpaP6fr5YVUW6zSAzfq0Es_iKyPoPDBpxIYdo7E1NUwgLRgSN3Jd1S3WpD1zbmxTGyZhJzRVt3-_QUQ2h2PY-eOwMYgOMqIf23dOBg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multidimensional Analysis of Atypical Events in Cyber-Physical Data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lu-An Tang ; Xiao Yu ; Sangkyum Kim ; Jiawei Han ; Wen-Chih Peng ; Yizhou Sun ; Gonzalez, H. ; Seith, S.</creator><creatorcontrib>Lu-An Tang ; Xiao Yu ; Sangkyum Kim ; Jiawei Han ; Wen-Chih Peng ; Yizhou Sun ; Gonzalez, H. ; Seith, S.</creatorcontrib><description>A Cyber-Physical System (CPS) integrates physical devices (e.g., sensors, cameras) with cyber (or informational) components to form a situation-integrated analytical system that may respond intelligently to dynamic changes of the real-world situations. CPS claims many promising applications, such as traffic observation, battlefield surveillance and sensor-network based monitoring. One important research topic in CPS is about the atypical event analysis, i.e., retrieving the events from large amount of data and analyzing them with spatial, temporal and other multi-dimensional information. Many traditional approaches are not feasible for such analysis since they use numeric measures and cannot describe the complex atypical events. In this study, we propose a new model of atypical cluster to effectively represent those events and efficiently retrieve them from massive data. The micro-cluster is designed to summarize individual events, and the macro-cluster is used to integrate the information from multiple event. To facilitate scalable, flexible and online analysis, the concept of significant cluster is defined and a guided clustering algorithm is proposed to retrieve significant clusters in an efficient manner. We conduct experiments on real datasets with the size of more than 50 GB, the results show that the proposed method can provide more accurate information with only 15% to 20% time cost of the baselines.</description><identifier>ISSN: 1063-6382</identifier><identifier>ISBN: 9781467300421</identifier><identifier>ISBN: 146730042X</identifier><identifier>EISSN: 2375-026X</identifier><identifier>EISBN: 0769547478</identifier><identifier>EISBN: 9780769547473</identifier><identifier>DOI: 10.1109/ICDE.2012.32</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering algorithms ; Complexity theory ; Indexes ; Monitoring ; Query processing ; Roads</subject><ispartof>2012 IEEE 28th International Conference on Data Engineering, 2012, p.1025-1036</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6228153$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6228153$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lu-An Tang</creatorcontrib><creatorcontrib>Xiao Yu</creatorcontrib><creatorcontrib>Sangkyum Kim</creatorcontrib><creatorcontrib>Jiawei Han</creatorcontrib><creatorcontrib>Wen-Chih Peng</creatorcontrib><creatorcontrib>Yizhou Sun</creatorcontrib><creatorcontrib>Gonzalez, H.</creatorcontrib><creatorcontrib>Seith, S.</creatorcontrib><title>Multidimensional Analysis of Atypical Events in Cyber-Physical Data</title><title>2012 IEEE 28th International Conference on Data Engineering</title><addtitle>icde</addtitle><description>A Cyber-Physical System (CPS) integrates physical devices (e.g., sensors, cameras) with cyber (or informational) components to form a situation-integrated analytical system that may respond intelligently to dynamic changes of the real-world situations. CPS claims many promising applications, such as traffic observation, battlefield surveillance and sensor-network based monitoring. One important research topic in CPS is about the atypical event analysis, i.e., retrieving the events from large amount of data and analyzing them with spatial, temporal and other multi-dimensional information. Many traditional approaches are not feasible for such analysis since they use numeric measures and cannot describe the complex atypical events. In this study, we propose a new model of atypical cluster to effectively represent those events and efficiently retrieve them from massive data. The micro-cluster is designed to summarize individual events, and the macro-cluster is used to integrate the information from multiple event. To facilitate scalable, flexible and online analysis, the concept of significant cluster is defined and a guided clustering algorithm is proposed to retrieve significant clusters in an efficient manner. We conduct experiments on real datasets with the size of more than 50 GB, the results show that the proposed method can provide more accurate information with only 15% to 20% time cost of the baselines.</description><subject>Clustering algorithms</subject><subject>Complexity theory</subject><subject>Indexes</subject><subject>Monitoring</subject><subject>Query processing</subject><subject>Roads</subject><issn>1063-6382</issn><issn>2375-026X</issn><isbn>9781467300421</isbn><isbn>146730042X</isbn><isbn>0769547478</isbn><isbn>9780769547473</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjE1Lw0AYhNcvsNbevHnJH0jd9yO7m2NIqxYqelDwVjbJG1xp09KNQv69EZ3DDMwzjFI3oOcAOr9blYvlHDXgnPBEXWlr8owtW3eqJkg2SzWa9zM1y60DNpa0ZoRzNQFtKDXk8FLNYvzUo3IGyPRElU9f2z40YSddDPvOb5NitCGGmOzbpOiHQ6jHcvktXR-T0CXlUMkxffkYJ79g4Xt_rS5av40y-8-pertfvpaP6fr5YVUW6zSAzfq0Es_iKyPoPDBpxIYdo7E1NUwgLRgSN3Jd1S3WpD1zbmxTGyZhJzRVt3-_QUQ2h2PY-eOwMYgOMqIf23dOBg</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Lu-An Tang</creator><creator>Xiao Yu</creator><creator>Sangkyum Kim</creator><creator>Jiawei Han</creator><creator>Wen-Chih Peng</creator><creator>Yizhou Sun</creator><creator>Gonzalez, H.</creator><creator>Seith, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201204</creationdate><title>Multidimensional Analysis of Atypical Events in Cyber-Physical Data</title><author>Lu-An Tang ; Xiao Yu ; Sangkyum Kim ; Jiawei Han ; Wen-Chih Peng ; Yizhou Sun ; Gonzalez, H. ; Seith, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-bea4eab6e28a143022d484267c3d431ef163e8b6e0bcf2c30a44967dc643e48e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Clustering algorithms</topic><topic>Complexity theory</topic><topic>Indexes</topic><topic>Monitoring</topic><topic>Query processing</topic><topic>Roads</topic><toplevel>online_resources</toplevel><creatorcontrib>Lu-An Tang</creatorcontrib><creatorcontrib>Xiao Yu</creatorcontrib><creatorcontrib>Sangkyum Kim</creatorcontrib><creatorcontrib>Jiawei Han</creatorcontrib><creatorcontrib>Wen-Chih Peng</creatorcontrib><creatorcontrib>Yizhou Sun</creatorcontrib><creatorcontrib>Gonzalez, H.</creatorcontrib><creatorcontrib>Seith, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lu-An Tang</au><au>Xiao Yu</au><au>Sangkyum Kim</au><au>Jiawei Han</au><au>Wen-Chih Peng</au><au>Yizhou Sun</au><au>Gonzalez, H.</au><au>Seith, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multidimensional Analysis of Atypical Events in Cyber-Physical Data</atitle><btitle>2012 IEEE 28th International Conference on Data Engineering</btitle><stitle>icde</stitle><date>2012-04</date><risdate>2012</risdate><spage>1025</spage><epage>1036</epage><pages>1025-1036</pages><issn>1063-6382</issn><eissn>2375-026X</eissn><isbn>9781467300421</isbn><isbn>146730042X</isbn><eisbn>0769547478</eisbn><eisbn>9780769547473</eisbn><abstract>A Cyber-Physical System (CPS) integrates physical devices (e.g., sensors, cameras) with cyber (or informational) components to form a situation-integrated analytical system that may respond intelligently to dynamic changes of the real-world situations. CPS claims many promising applications, such as traffic observation, battlefield surveillance and sensor-network based monitoring. One important research topic in CPS is about the atypical event analysis, i.e., retrieving the events from large amount of data and analyzing them with spatial, temporal and other multi-dimensional information. Many traditional approaches are not feasible for such analysis since they use numeric measures and cannot describe the complex atypical events. In this study, we propose a new model of atypical cluster to effectively represent those events and efficiently retrieve them from massive data. The micro-cluster is designed to summarize individual events, and the macro-cluster is used to integrate the information from multiple event. To facilitate scalable, flexible and online analysis, the concept of significant cluster is defined and a guided clustering algorithm is proposed to retrieve significant clusters in an efficient manner. We conduct experiments on real datasets with the size of more than 50 GB, the results show that the proposed method can provide more accurate information with only 15% to 20% time cost of the baselines.</abstract><pub>IEEE</pub><doi>10.1109/ICDE.2012.32</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6382 |
ispartof | 2012 IEEE 28th International Conference on Data Engineering, 2012, p.1025-1036 |
issn | 1063-6382 2375-026X |
language | eng |
recordid | cdi_ieee_primary_6228153 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Clustering algorithms Complexity theory Indexes Monitoring Query processing Roads |
title | Multidimensional Analysis of Atypical Events in Cyber-Physical Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A55%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multidimensional%20Analysis%20of%20Atypical%20Events%20in%20Cyber-Physical%20Data&rft.btitle=2012%20IEEE%2028th%20International%20Conference%20on%20Data%20Engineering&rft.au=Lu-An%20Tang&rft.date=2012-04&rft.spage=1025&rft.epage=1036&rft.pages=1025-1036&rft.issn=1063-6382&rft.eissn=2375-026X&rft.isbn=9781467300421&rft.isbn_list=146730042X&rft_id=info:doi/10.1109/ICDE.2012.32&rft.eisbn=0769547478&rft.eisbn_list=9780769547473&rft_dat=%3Cieee_6IE%3E6228153%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-bea4eab6e28a143022d484267c3d431ef163e8b6e0bcf2c30a44967dc643e48e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6228153&rfr_iscdi=true |