Loading…

Multidimensional Analysis of Atypical Events in Cyber-Physical Data

A Cyber-Physical System (CPS) integrates physical devices (e.g., sensors, cameras) with cyber (or informational) components to form a situation-integrated analytical system that may respond intelligently to dynamic changes of the real-world situations. CPS claims many promising applications, such as...

Full description

Saved in:
Bibliographic Details
Main Authors: Lu-An Tang, Xiao Yu, Sangkyum Kim, Jiawei Han, Wen-Chih Peng, Yizhou Sun, Gonzalez, H., Seith, S.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1036
container_issue
container_start_page 1025
container_title
container_volume
creator Lu-An Tang
Xiao Yu
Sangkyum Kim
Jiawei Han
Wen-Chih Peng
Yizhou Sun
Gonzalez, H.
Seith, S.
description A Cyber-Physical System (CPS) integrates physical devices (e.g., sensors, cameras) with cyber (or informational) components to form a situation-integrated analytical system that may respond intelligently to dynamic changes of the real-world situations. CPS claims many promising applications, such as traffic observation, battlefield surveillance and sensor-network based monitoring. One important research topic in CPS is about the atypical event analysis, i.e., retrieving the events from large amount of data and analyzing them with spatial, temporal and other multi-dimensional information. Many traditional approaches are not feasible for such analysis since they use numeric measures and cannot describe the complex atypical events. In this study, we propose a new model of atypical cluster to effectively represent those events and efficiently retrieve them from massive data. The micro-cluster is designed to summarize individual events, and the macro-cluster is used to integrate the information from multiple event. To facilitate scalable, flexible and online analysis, the concept of significant cluster is defined and a guided clustering algorithm is proposed to retrieve significant clusters in an efficient manner. We conduct experiments on real datasets with the size of more than 50 GB, the results show that the proposed method can provide more accurate information with only 15% to 20% time cost of the baselines.
doi_str_mv 10.1109/ICDE.2012.32
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6228153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6228153</ieee_id><sourcerecordid>6228153</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-bea4eab6e28a143022d484267c3d431ef163e8b6e0bcf2c30a44967dc643e48e3</originalsourceid><addsrcrecordid>eNotjE1Lw0AYhNcvsNbevHnJH0jd9yO7m2NIqxYqelDwVjbJG1xp09KNQv69EZ3DDMwzjFI3oOcAOr9blYvlHDXgnPBEXWlr8owtW3eqJkg2SzWa9zM1y60DNpa0ZoRzNQFtKDXk8FLNYvzUo3IGyPRElU9f2z40YSddDPvOb5NitCGGmOzbpOiHQ6jHcvktXR-T0CXlUMkxffkYJ79g4Xt_rS5av40y-8-pertfvpaP6fr5YVUW6zSAzfq0Es_iKyPoPDBpxIYdo7E1NUwgLRgSN3Jd1S3WpD1zbmxTGyZhJzRVt3-_QUQ2h2PY-eOwMYgOMqIf23dOBg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multidimensional Analysis of Atypical Events in Cyber-Physical Data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lu-An Tang ; Xiao Yu ; Sangkyum Kim ; Jiawei Han ; Wen-Chih Peng ; Yizhou Sun ; Gonzalez, H. ; Seith, S.</creator><creatorcontrib>Lu-An Tang ; Xiao Yu ; Sangkyum Kim ; Jiawei Han ; Wen-Chih Peng ; Yizhou Sun ; Gonzalez, H. ; Seith, S.</creatorcontrib><description>A Cyber-Physical System (CPS) integrates physical devices (e.g., sensors, cameras) with cyber (or informational) components to form a situation-integrated analytical system that may respond intelligently to dynamic changes of the real-world situations. CPS claims many promising applications, such as traffic observation, battlefield surveillance and sensor-network based monitoring. One important research topic in CPS is about the atypical event analysis, i.e., retrieving the events from large amount of data and analyzing them with spatial, temporal and other multi-dimensional information. Many traditional approaches are not feasible for such analysis since they use numeric measures and cannot describe the complex atypical events. In this study, we propose a new model of atypical cluster to effectively represent those events and efficiently retrieve them from massive data. The micro-cluster is designed to summarize individual events, and the macro-cluster is used to integrate the information from multiple event. To facilitate scalable, flexible and online analysis, the concept of significant cluster is defined and a guided clustering algorithm is proposed to retrieve significant clusters in an efficient manner. We conduct experiments on real datasets with the size of more than 50 GB, the results show that the proposed method can provide more accurate information with only 15% to 20% time cost of the baselines.</description><identifier>ISSN: 1063-6382</identifier><identifier>ISBN: 9781467300421</identifier><identifier>ISBN: 146730042X</identifier><identifier>EISSN: 2375-026X</identifier><identifier>EISBN: 0769547478</identifier><identifier>EISBN: 9780769547473</identifier><identifier>DOI: 10.1109/ICDE.2012.32</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering algorithms ; Complexity theory ; Indexes ; Monitoring ; Query processing ; Roads</subject><ispartof>2012 IEEE 28th International Conference on Data Engineering, 2012, p.1025-1036</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6228153$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6228153$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lu-An Tang</creatorcontrib><creatorcontrib>Xiao Yu</creatorcontrib><creatorcontrib>Sangkyum Kim</creatorcontrib><creatorcontrib>Jiawei Han</creatorcontrib><creatorcontrib>Wen-Chih Peng</creatorcontrib><creatorcontrib>Yizhou Sun</creatorcontrib><creatorcontrib>Gonzalez, H.</creatorcontrib><creatorcontrib>Seith, S.</creatorcontrib><title>Multidimensional Analysis of Atypical Events in Cyber-Physical Data</title><title>2012 IEEE 28th International Conference on Data Engineering</title><addtitle>icde</addtitle><description>A Cyber-Physical System (CPS) integrates physical devices (e.g., sensors, cameras) with cyber (or informational) components to form a situation-integrated analytical system that may respond intelligently to dynamic changes of the real-world situations. CPS claims many promising applications, such as traffic observation, battlefield surveillance and sensor-network based monitoring. One important research topic in CPS is about the atypical event analysis, i.e., retrieving the events from large amount of data and analyzing them with spatial, temporal and other multi-dimensional information. Many traditional approaches are not feasible for such analysis since they use numeric measures and cannot describe the complex atypical events. In this study, we propose a new model of atypical cluster to effectively represent those events and efficiently retrieve them from massive data. The micro-cluster is designed to summarize individual events, and the macro-cluster is used to integrate the information from multiple event. To facilitate scalable, flexible and online analysis, the concept of significant cluster is defined and a guided clustering algorithm is proposed to retrieve significant clusters in an efficient manner. We conduct experiments on real datasets with the size of more than 50 GB, the results show that the proposed method can provide more accurate information with only 15% to 20% time cost of the baselines.</description><subject>Clustering algorithms</subject><subject>Complexity theory</subject><subject>Indexes</subject><subject>Monitoring</subject><subject>Query processing</subject><subject>Roads</subject><issn>1063-6382</issn><issn>2375-026X</issn><isbn>9781467300421</isbn><isbn>146730042X</isbn><isbn>0769547478</isbn><isbn>9780769547473</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjE1Lw0AYhNcvsNbevHnJH0jd9yO7m2NIqxYqelDwVjbJG1xp09KNQv69EZ3DDMwzjFI3oOcAOr9blYvlHDXgnPBEXWlr8owtW3eqJkg2SzWa9zM1y60DNpa0ZoRzNQFtKDXk8FLNYvzUo3IGyPRElU9f2z40YSddDPvOb5NitCGGmOzbpOiHQ6jHcvktXR-T0CXlUMkxffkYJ79g4Xt_rS5av40y-8-pertfvpaP6fr5YVUW6zSAzfq0Es_iKyPoPDBpxIYdo7E1NUwgLRgSN3Jd1S3WpD1zbmxTGyZhJzRVt3-_QUQ2h2PY-eOwMYgOMqIf23dOBg</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Lu-An Tang</creator><creator>Xiao Yu</creator><creator>Sangkyum Kim</creator><creator>Jiawei Han</creator><creator>Wen-Chih Peng</creator><creator>Yizhou Sun</creator><creator>Gonzalez, H.</creator><creator>Seith, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201204</creationdate><title>Multidimensional Analysis of Atypical Events in Cyber-Physical Data</title><author>Lu-An Tang ; Xiao Yu ; Sangkyum Kim ; Jiawei Han ; Wen-Chih Peng ; Yizhou Sun ; Gonzalez, H. ; Seith, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-bea4eab6e28a143022d484267c3d431ef163e8b6e0bcf2c30a44967dc643e48e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Clustering algorithms</topic><topic>Complexity theory</topic><topic>Indexes</topic><topic>Monitoring</topic><topic>Query processing</topic><topic>Roads</topic><toplevel>online_resources</toplevel><creatorcontrib>Lu-An Tang</creatorcontrib><creatorcontrib>Xiao Yu</creatorcontrib><creatorcontrib>Sangkyum Kim</creatorcontrib><creatorcontrib>Jiawei Han</creatorcontrib><creatorcontrib>Wen-Chih Peng</creatorcontrib><creatorcontrib>Yizhou Sun</creatorcontrib><creatorcontrib>Gonzalez, H.</creatorcontrib><creatorcontrib>Seith, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lu-An Tang</au><au>Xiao Yu</au><au>Sangkyum Kim</au><au>Jiawei Han</au><au>Wen-Chih Peng</au><au>Yizhou Sun</au><au>Gonzalez, H.</au><au>Seith, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multidimensional Analysis of Atypical Events in Cyber-Physical Data</atitle><btitle>2012 IEEE 28th International Conference on Data Engineering</btitle><stitle>icde</stitle><date>2012-04</date><risdate>2012</risdate><spage>1025</spage><epage>1036</epage><pages>1025-1036</pages><issn>1063-6382</issn><eissn>2375-026X</eissn><isbn>9781467300421</isbn><isbn>146730042X</isbn><eisbn>0769547478</eisbn><eisbn>9780769547473</eisbn><abstract>A Cyber-Physical System (CPS) integrates physical devices (e.g., sensors, cameras) with cyber (or informational) components to form a situation-integrated analytical system that may respond intelligently to dynamic changes of the real-world situations. CPS claims many promising applications, such as traffic observation, battlefield surveillance and sensor-network based monitoring. One important research topic in CPS is about the atypical event analysis, i.e., retrieving the events from large amount of data and analyzing them with spatial, temporal and other multi-dimensional information. Many traditional approaches are not feasible for such analysis since they use numeric measures and cannot describe the complex atypical events. In this study, we propose a new model of atypical cluster to effectively represent those events and efficiently retrieve them from massive data. The micro-cluster is designed to summarize individual events, and the macro-cluster is used to integrate the information from multiple event. To facilitate scalable, flexible and online analysis, the concept of significant cluster is defined and a guided clustering algorithm is proposed to retrieve significant clusters in an efficient manner. We conduct experiments on real datasets with the size of more than 50 GB, the results show that the proposed method can provide more accurate information with only 15% to 20% time cost of the baselines.</abstract><pub>IEEE</pub><doi>10.1109/ICDE.2012.32</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6382
ispartof 2012 IEEE 28th International Conference on Data Engineering, 2012, p.1025-1036
issn 1063-6382
2375-026X
language eng
recordid cdi_ieee_primary_6228153
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Clustering algorithms
Complexity theory
Indexes
Monitoring
Query processing
Roads
title Multidimensional Analysis of Atypical Events in Cyber-Physical Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A55%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multidimensional%20Analysis%20of%20Atypical%20Events%20in%20Cyber-Physical%20Data&rft.btitle=2012%20IEEE%2028th%20International%20Conference%20on%20Data%20Engineering&rft.au=Lu-An%20Tang&rft.date=2012-04&rft.spage=1025&rft.epage=1036&rft.pages=1025-1036&rft.issn=1063-6382&rft.eissn=2375-026X&rft.isbn=9781467300421&rft.isbn_list=146730042X&rft_id=info:doi/10.1109/ICDE.2012.32&rft.eisbn=0769547478&rft.eisbn_list=9780769547473&rft_dat=%3Cieee_6IE%3E6228153%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-bea4eab6e28a143022d484267c3d431ef163e8b6e0bcf2c30a44967dc643e48e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6228153&rfr_iscdi=true