Loading…
Spatial variation decomposition via sparse regression
In this paper, we briefly discuss the recent development of a novel sparse regression technique that aims to accurately decompose process variation into two different components: (1) spatially correlated variation, and (2) uncorrelated random variation. Such variation decomposition is important to i...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Wangyang Zhang Balakrishnan, K. Xin Li Boning, D. Acar, E. Liu, F. Rutenbar, R. A. |
description | In this paper, we briefly discuss the recent development of a novel sparse regression technique that aims to accurately decompose process variation into two different components: (1) spatially correlated variation, and (2) uncorrelated random variation. Such variation decomposition is important to identify systematic variation patterns at wafer and/or chip level for process modeling, control and diagnosis. We demonstrate that the spatially correlated variation can be accurately represented by the linear combination of a small number of "templates". Based upon this observation, an efficient algorithm is developed to accurately separate spatially correlated variation from uncorrelated random variation. Several examples based on silicon measurement data demonstrate that the aforementioned sparse regression technique can capture systematic variation patterns with high accuracy. |
doi_str_mv | 10.1109/ICICDT.2012.6232875 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6232875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6232875</ieee_id><sourcerecordid>6232875</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1355-5d54c16571438e440c9694c754c6dc2b0bcec6b10ccd678542bdfd4f41a0c9f83</originalsourceid><addsrcrecordid>eNo1kM1OwzAQhM2fRCl5gl7yAgm7_vcRBQqRKnGgnCvHdpBRSyIbVeLtsaCcZme-1a40hKwQWkQwd33Xdw_blgLSVlJGtRJnpDJKI5eKAXJOz8mCSoMNcEkvyM0_kOayAKaxYUKIa1Ll_AEAFABR4IKI19l-RbuvjzbFMk2ftQ9uOsxTjr_uGG2dZ5tyqFN4TyHnkt6Sq9Huc6hOuiRv68dt99xsXp767n7TRCzvGuEFdyiFQs504ByckYY7VVLpHR1gcMHJAcE5L5UWnA5-9HzkaMvqqNmSrP7uxhDCbk7xYNP37tQA-wH9d0sW</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Spatial variation decomposition via sparse regression</title><source>IEEE Xplore All Conference Series</source><creator>Wangyang Zhang ; Balakrishnan, K. ; Xin Li ; Boning, D. ; Acar, E. ; Liu, F. ; Rutenbar, R. A.</creator><creatorcontrib>Wangyang Zhang ; Balakrishnan, K. ; Xin Li ; Boning, D. ; Acar, E. ; Liu, F. ; Rutenbar, R. A.</creatorcontrib><description>In this paper, we briefly discuss the recent development of a novel sparse regression technique that aims to accurately decompose process variation into two different components: (1) spatially correlated variation, and (2) uncorrelated random variation. Such variation decomposition is important to identify systematic variation patterns at wafer and/or chip level for process modeling, control and diagnosis. We demonstrate that the spatially correlated variation can be accurately represented by the linear combination of a small number of "templates". Based upon this observation, an efficient algorithm is developed to accurately separate spatially correlated variation from uncorrelated random variation. Several examples based on silicon measurement data demonstrate that the aforementioned sparse regression technique can capture systematic variation patterns with high accuracy.</description><identifier>ISSN: 2381-3555</identifier><identifier>ISBN: 1467301469</identifier><identifier>ISBN: 9781467301466</identifier><identifier>EISSN: 2691-0462</identifier><identifier>EISBN: 9781467301442</identifier><identifier>EISBN: 1467301450</identifier><identifier>EISBN: 1467301442</identifier><identifier>EISBN: 9781467301459</identifier><identifier>DOI: 10.1109/ICICDT.2012.6232875</identifier><language>eng</language><publisher>IEEE</publisher><subject>Dictionaries ; Discrete cosine transforms ; Electrical resistance measurement ; integrated circuit ; Matching pursuit algorithms ; process variation ; Semiconductor device measurement ; Systematics ; variation decomposition ; Vectors</subject><ispartof>2012 IEEE International Conference on IC Design & Technology, 2012, p.1-4</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6232875$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54554,54919,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6232875$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wangyang Zhang</creatorcontrib><creatorcontrib>Balakrishnan, K.</creatorcontrib><creatorcontrib>Xin Li</creatorcontrib><creatorcontrib>Boning, D.</creatorcontrib><creatorcontrib>Acar, E.</creatorcontrib><creatorcontrib>Liu, F.</creatorcontrib><creatorcontrib>Rutenbar, R. A.</creatorcontrib><title>Spatial variation decomposition via sparse regression</title><title>2012 IEEE International Conference on IC Design & Technology</title><addtitle>ICICDT</addtitle><description>In this paper, we briefly discuss the recent development of a novel sparse regression technique that aims to accurately decompose process variation into two different components: (1) spatially correlated variation, and (2) uncorrelated random variation. Such variation decomposition is important to identify systematic variation patterns at wafer and/or chip level for process modeling, control and diagnosis. We demonstrate that the spatially correlated variation can be accurately represented by the linear combination of a small number of "templates". Based upon this observation, an efficient algorithm is developed to accurately separate spatially correlated variation from uncorrelated random variation. Several examples based on silicon measurement data demonstrate that the aforementioned sparse regression technique can capture systematic variation patterns with high accuracy.</description><subject>Dictionaries</subject><subject>Discrete cosine transforms</subject><subject>Electrical resistance measurement</subject><subject>integrated circuit</subject><subject>Matching pursuit algorithms</subject><subject>process variation</subject><subject>Semiconductor device measurement</subject><subject>Systematics</subject><subject>variation decomposition</subject><subject>Vectors</subject><issn>2381-3555</issn><issn>2691-0462</issn><isbn>1467301469</isbn><isbn>9781467301466</isbn><isbn>9781467301442</isbn><isbn>1467301450</isbn><isbn>1467301442</isbn><isbn>9781467301459</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kM1OwzAQhM2fRCl5gl7yAgm7_vcRBQqRKnGgnCvHdpBRSyIbVeLtsaCcZme-1a40hKwQWkQwd33Xdw_blgLSVlJGtRJnpDJKI5eKAXJOz8mCSoMNcEkvyM0_kOayAKaxYUKIa1Ll_AEAFABR4IKI19l-RbuvjzbFMk2ftQ9uOsxTjr_uGG2dZ5tyqFN4TyHnkt6Sq9Huc6hOuiRv68dt99xsXp767n7TRCzvGuEFdyiFQs504ByckYY7VVLpHR1gcMHJAcE5L5UWnA5-9HzkaMvqqNmSrP7uxhDCbk7xYNP37tQA-wH9d0sW</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Wangyang Zhang</creator><creator>Balakrishnan, K.</creator><creator>Xin Li</creator><creator>Boning, D.</creator><creator>Acar, E.</creator><creator>Liu, F.</creator><creator>Rutenbar, R. A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201205</creationdate><title>Spatial variation decomposition via sparse regression</title><author>Wangyang Zhang ; Balakrishnan, K. ; Xin Li ; Boning, D. ; Acar, E. ; Liu, F. ; Rutenbar, R. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1355-5d54c16571438e440c9694c754c6dc2b0bcec6b10ccd678542bdfd4f41a0c9f83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Dictionaries</topic><topic>Discrete cosine transforms</topic><topic>Electrical resistance measurement</topic><topic>integrated circuit</topic><topic>Matching pursuit algorithms</topic><topic>process variation</topic><topic>Semiconductor device measurement</topic><topic>Systematics</topic><topic>variation decomposition</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Wangyang Zhang</creatorcontrib><creatorcontrib>Balakrishnan, K.</creatorcontrib><creatorcontrib>Xin Li</creatorcontrib><creatorcontrib>Boning, D.</creatorcontrib><creatorcontrib>Acar, E.</creatorcontrib><creatorcontrib>Liu, F.</creatorcontrib><creatorcontrib>Rutenbar, R. A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wangyang Zhang</au><au>Balakrishnan, K.</au><au>Xin Li</au><au>Boning, D.</au><au>Acar, E.</au><au>Liu, F.</au><au>Rutenbar, R. A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Spatial variation decomposition via sparse regression</atitle><btitle>2012 IEEE International Conference on IC Design & Technology</btitle><stitle>ICICDT</stitle><date>2012-05</date><risdate>2012</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2381-3555</issn><eissn>2691-0462</eissn><isbn>1467301469</isbn><isbn>9781467301466</isbn><eisbn>9781467301442</eisbn><eisbn>1467301450</eisbn><eisbn>1467301442</eisbn><eisbn>9781467301459</eisbn><abstract>In this paper, we briefly discuss the recent development of a novel sparse regression technique that aims to accurately decompose process variation into two different components: (1) spatially correlated variation, and (2) uncorrelated random variation. Such variation decomposition is important to identify systematic variation patterns at wafer and/or chip level for process modeling, control and diagnosis. We demonstrate that the spatially correlated variation can be accurately represented by the linear combination of a small number of "templates". Based upon this observation, an efficient algorithm is developed to accurately separate spatially correlated variation from uncorrelated random variation. Several examples based on silicon measurement data demonstrate that the aforementioned sparse regression technique can capture systematic variation patterns with high accuracy.</abstract><pub>IEEE</pub><doi>10.1109/ICICDT.2012.6232875</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2381-3555 |
ispartof | 2012 IEEE International Conference on IC Design & Technology, 2012, p.1-4 |
issn | 2381-3555 2691-0462 |
language | eng |
recordid | cdi_ieee_primary_6232875 |
source | IEEE Xplore All Conference Series |
subjects | Dictionaries Discrete cosine transforms Electrical resistance measurement integrated circuit Matching pursuit algorithms process variation Semiconductor device measurement Systematics variation decomposition Vectors |
title | Spatial variation decomposition via sparse regression |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A58%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Spatial%20variation%20decomposition%20via%20sparse%20regression&rft.btitle=2012%20IEEE%20International%20Conference%20on%20IC%20Design%20&%20Technology&rft.au=Wangyang%20Zhang&rft.date=2012-05&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2381-3555&rft.eissn=2691-0462&rft.isbn=1467301469&rft.isbn_list=9781467301466&rft_id=info:doi/10.1109/ICICDT.2012.6232875&rft.eisbn=9781467301442&rft.eisbn_list=1467301450&rft.eisbn_list=1467301442&rft.eisbn_list=9781467301459&rft_dat=%3Cieee_CHZPO%3E6232875%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1355-5d54c16571438e440c9694c754c6dc2b0bcec6b10ccd678542bdfd4f41a0c9f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6232875&rfr_iscdi=true |