Loading…

Spatial variation decomposition via sparse regression

In this paper, we briefly discuss the recent development of a novel sparse regression technique that aims to accurately decompose process variation into two different components: (1) spatially correlated variation, and (2) uncorrelated random variation. Such variation decomposition is important to i...

Full description

Saved in:
Bibliographic Details
Main Authors: Wangyang Zhang, Balakrishnan, K., Xin Li, Boning, D., Acar, E., Liu, F., Rutenbar, R. A.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Wangyang Zhang
Balakrishnan, K.
Xin Li
Boning, D.
Acar, E.
Liu, F.
Rutenbar, R. A.
description In this paper, we briefly discuss the recent development of a novel sparse regression technique that aims to accurately decompose process variation into two different components: (1) spatially correlated variation, and (2) uncorrelated random variation. Such variation decomposition is important to identify systematic variation patterns at wafer and/or chip level for process modeling, control and diagnosis. We demonstrate that the spatially correlated variation can be accurately represented by the linear combination of a small number of "templates". Based upon this observation, an efficient algorithm is developed to accurately separate spatially correlated variation from uncorrelated random variation. Several examples based on silicon measurement data demonstrate that the aforementioned sparse regression technique can capture systematic variation patterns with high accuracy.
doi_str_mv 10.1109/ICICDT.2012.6232875
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6232875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6232875</ieee_id><sourcerecordid>6232875</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1355-5d54c16571438e440c9694c754c6dc2b0bcec6b10ccd678542bdfd4f41a0c9f83</originalsourceid><addsrcrecordid>eNo1kM1OwzAQhM2fRCl5gl7yAgm7_vcRBQqRKnGgnCvHdpBRSyIbVeLtsaCcZme-1a40hKwQWkQwd33Xdw_blgLSVlJGtRJnpDJKI5eKAXJOz8mCSoMNcEkvyM0_kOayAKaxYUKIa1Ll_AEAFABR4IKI19l-RbuvjzbFMk2ftQ9uOsxTjr_uGG2dZ5tyqFN4TyHnkt6Sq9Huc6hOuiRv68dt99xsXp767n7TRCzvGuEFdyiFQs504ByckYY7VVLpHR1gcMHJAcE5L5UWnA5-9HzkaMvqqNmSrP7uxhDCbk7xYNP37tQA-wH9d0sW</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Spatial variation decomposition via sparse regression</title><source>IEEE Xplore All Conference Series</source><creator>Wangyang Zhang ; Balakrishnan, K. ; Xin Li ; Boning, D. ; Acar, E. ; Liu, F. ; Rutenbar, R. A.</creator><creatorcontrib>Wangyang Zhang ; Balakrishnan, K. ; Xin Li ; Boning, D. ; Acar, E. ; Liu, F. ; Rutenbar, R. A.</creatorcontrib><description>In this paper, we briefly discuss the recent development of a novel sparse regression technique that aims to accurately decompose process variation into two different components: (1) spatially correlated variation, and (2) uncorrelated random variation. Such variation decomposition is important to identify systematic variation patterns at wafer and/or chip level for process modeling, control and diagnosis. We demonstrate that the spatially correlated variation can be accurately represented by the linear combination of a small number of "templates". Based upon this observation, an efficient algorithm is developed to accurately separate spatially correlated variation from uncorrelated random variation. Several examples based on silicon measurement data demonstrate that the aforementioned sparse regression technique can capture systematic variation patterns with high accuracy.</description><identifier>ISSN: 2381-3555</identifier><identifier>ISBN: 1467301469</identifier><identifier>ISBN: 9781467301466</identifier><identifier>EISSN: 2691-0462</identifier><identifier>EISBN: 9781467301442</identifier><identifier>EISBN: 1467301450</identifier><identifier>EISBN: 1467301442</identifier><identifier>EISBN: 9781467301459</identifier><identifier>DOI: 10.1109/ICICDT.2012.6232875</identifier><language>eng</language><publisher>IEEE</publisher><subject>Dictionaries ; Discrete cosine transforms ; Electrical resistance measurement ; integrated circuit ; Matching pursuit algorithms ; process variation ; Semiconductor device measurement ; Systematics ; variation decomposition ; Vectors</subject><ispartof>2012 IEEE International Conference on IC Design &amp; Technology, 2012, p.1-4</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6232875$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54554,54919,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6232875$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wangyang Zhang</creatorcontrib><creatorcontrib>Balakrishnan, K.</creatorcontrib><creatorcontrib>Xin Li</creatorcontrib><creatorcontrib>Boning, D.</creatorcontrib><creatorcontrib>Acar, E.</creatorcontrib><creatorcontrib>Liu, F.</creatorcontrib><creatorcontrib>Rutenbar, R. A.</creatorcontrib><title>Spatial variation decomposition via sparse regression</title><title>2012 IEEE International Conference on IC Design &amp; Technology</title><addtitle>ICICDT</addtitle><description>In this paper, we briefly discuss the recent development of a novel sparse regression technique that aims to accurately decompose process variation into two different components: (1) spatially correlated variation, and (2) uncorrelated random variation. Such variation decomposition is important to identify systematic variation patterns at wafer and/or chip level for process modeling, control and diagnosis. We demonstrate that the spatially correlated variation can be accurately represented by the linear combination of a small number of "templates". Based upon this observation, an efficient algorithm is developed to accurately separate spatially correlated variation from uncorrelated random variation. Several examples based on silicon measurement data demonstrate that the aforementioned sparse regression technique can capture systematic variation patterns with high accuracy.</description><subject>Dictionaries</subject><subject>Discrete cosine transforms</subject><subject>Electrical resistance measurement</subject><subject>integrated circuit</subject><subject>Matching pursuit algorithms</subject><subject>process variation</subject><subject>Semiconductor device measurement</subject><subject>Systematics</subject><subject>variation decomposition</subject><subject>Vectors</subject><issn>2381-3555</issn><issn>2691-0462</issn><isbn>1467301469</isbn><isbn>9781467301466</isbn><isbn>9781467301442</isbn><isbn>1467301450</isbn><isbn>1467301442</isbn><isbn>9781467301459</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kM1OwzAQhM2fRCl5gl7yAgm7_vcRBQqRKnGgnCvHdpBRSyIbVeLtsaCcZme-1a40hKwQWkQwd33Xdw_blgLSVlJGtRJnpDJKI5eKAXJOz8mCSoMNcEkvyM0_kOayAKaxYUKIa1Ll_AEAFABR4IKI19l-RbuvjzbFMk2ftQ9uOsxTjr_uGG2dZ5tyqFN4TyHnkt6Sq9Huc6hOuiRv68dt99xsXp767n7TRCzvGuEFdyiFQs504ByckYY7VVLpHR1gcMHJAcE5L5UWnA5-9HzkaMvqqNmSrP7uxhDCbk7xYNP37tQA-wH9d0sW</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Wangyang Zhang</creator><creator>Balakrishnan, K.</creator><creator>Xin Li</creator><creator>Boning, D.</creator><creator>Acar, E.</creator><creator>Liu, F.</creator><creator>Rutenbar, R. A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201205</creationdate><title>Spatial variation decomposition via sparse regression</title><author>Wangyang Zhang ; Balakrishnan, K. ; Xin Li ; Boning, D. ; Acar, E. ; Liu, F. ; Rutenbar, R. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1355-5d54c16571438e440c9694c754c6dc2b0bcec6b10ccd678542bdfd4f41a0c9f83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Dictionaries</topic><topic>Discrete cosine transforms</topic><topic>Electrical resistance measurement</topic><topic>integrated circuit</topic><topic>Matching pursuit algorithms</topic><topic>process variation</topic><topic>Semiconductor device measurement</topic><topic>Systematics</topic><topic>variation decomposition</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Wangyang Zhang</creatorcontrib><creatorcontrib>Balakrishnan, K.</creatorcontrib><creatorcontrib>Xin Li</creatorcontrib><creatorcontrib>Boning, D.</creatorcontrib><creatorcontrib>Acar, E.</creatorcontrib><creatorcontrib>Liu, F.</creatorcontrib><creatorcontrib>Rutenbar, R. A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wangyang Zhang</au><au>Balakrishnan, K.</au><au>Xin Li</au><au>Boning, D.</au><au>Acar, E.</au><au>Liu, F.</au><au>Rutenbar, R. A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Spatial variation decomposition via sparse regression</atitle><btitle>2012 IEEE International Conference on IC Design &amp; Technology</btitle><stitle>ICICDT</stitle><date>2012-05</date><risdate>2012</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2381-3555</issn><eissn>2691-0462</eissn><isbn>1467301469</isbn><isbn>9781467301466</isbn><eisbn>9781467301442</eisbn><eisbn>1467301450</eisbn><eisbn>1467301442</eisbn><eisbn>9781467301459</eisbn><abstract>In this paper, we briefly discuss the recent development of a novel sparse regression technique that aims to accurately decompose process variation into two different components: (1) spatially correlated variation, and (2) uncorrelated random variation. Such variation decomposition is important to identify systematic variation patterns at wafer and/or chip level for process modeling, control and diagnosis. We demonstrate that the spatially correlated variation can be accurately represented by the linear combination of a small number of "templates". Based upon this observation, an efficient algorithm is developed to accurately separate spatially correlated variation from uncorrelated random variation. Several examples based on silicon measurement data demonstrate that the aforementioned sparse regression technique can capture systematic variation patterns with high accuracy.</abstract><pub>IEEE</pub><doi>10.1109/ICICDT.2012.6232875</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2381-3555
ispartof 2012 IEEE International Conference on IC Design & Technology, 2012, p.1-4
issn 2381-3555
2691-0462
language eng
recordid cdi_ieee_primary_6232875
source IEEE Xplore All Conference Series
subjects Dictionaries
Discrete cosine transforms
Electrical resistance measurement
integrated circuit
Matching pursuit algorithms
process variation
Semiconductor device measurement
Systematics
variation decomposition
Vectors
title Spatial variation decomposition via sparse regression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A58%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Spatial%20variation%20decomposition%20via%20sparse%20regression&rft.btitle=2012%20IEEE%20International%20Conference%20on%20IC%20Design%20&%20Technology&rft.au=Wangyang%20Zhang&rft.date=2012-05&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2381-3555&rft.eissn=2691-0462&rft.isbn=1467301469&rft.isbn_list=9781467301466&rft_id=info:doi/10.1109/ICICDT.2012.6232875&rft.eisbn=9781467301442&rft.eisbn_list=1467301450&rft.eisbn_list=1467301442&rft.eisbn_list=9781467301459&rft_dat=%3Cieee_CHZPO%3E6232875%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1355-5d54c16571438e440c9694c754c6dc2b0bcec6b10ccd678542bdfd4f41a0c9f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6232875&rfr_iscdi=true