Loading…
Detection of unknown constant magnitude signals in time-varying channels
Spectrum sensing constitutes a key ingredient in many cognitive radio paradigms in order to detect and protect primary transmissions. Most sensing schemes in the literature assume a time-invariant channel. However, when operating in low Signal-to-Noise Ratio (SNR) conditions, observation times are n...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Romero, D. Lopez-Valcarce, R. |
description | Spectrum sensing constitutes a key ingredient in many cognitive radio paradigms in order to detect and protect primary transmissions. Most sensing schemes in the literature assume a time-invariant channel. However, when operating in low Signal-to-Noise Ratio (SNR) conditions, observation times are necessarily long and may become larger than the coherence time of the channel. In this paper the problem of detecting an unknown constant-magnitude waveform in frequency-flat time-varying channels with noise background of unknown variance is considered. The channel is modeled using a basis expansion model (BEM) with random coefficients. Adopting a generalized likelihood ratio (GLR) approach in order to deal with nuisance parameters, a non-convex optimization problem results. We discuss different possibilities to circumvent this problem, including several low complexity approximations to the GLR test as well as an efficient fixed-point iterative method to obtain the true GLR statistic. The approximations exhibit a performance ceiling in terms of probability of detection as the SNR increases, whereas the true GLR test does not. Thus, the proposed fixed-point iteration constitutes the preferred choice in applications requiring a high probability of detection. |
doi_str_mv | 10.1109/CIP.2012.6232933 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6232933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6232933</ieee_id><sourcerecordid>6232933</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-27cbbd71aa5ace30bb4499302e3f9b3df99d686258f53d7c922abc648a606ba43</originalsourceid><addsrcrecordid>eNo90MtOwzAUBFDzkigleyQ2_oGEazvxY4lCoZUqwaL7ynacYGhuUOOC-HsiUVjN4kij0RByw6BgDMxdvXopODBeSC64EeKEZEZpVkolmFaSnZLZBCpn0ugzcvUHypz_g2KXJBvHNwBgoKtKwowsH0IKPsUB6dDSA77j8IXUDzgmi4n2tsOYDk2gY-zQ7kYakabYh_zT7r8jdtS_WsSwG6_JRTt5yI45J5vHxaZe5uvnp1V9v86jgZRz5Z1rFLO2sj4IcK4sjRHAg2iNE01rTCO15JVuK9Eobzi3zstSWwnS2VLMye1vbQwhbD_2sZ92bI-fiB_a2lGI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Detection of unknown constant magnitude signals in time-varying channels</title><source>IEEE Xplore All Conference Series</source><creator>Romero, D. ; Lopez-Valcarce, R.</creator><creatorcontrib>Romero, D. ; Lopez-Valcarce, R.</creatorcontrib><description>Spectrum sensing constitutes a key ingredient in many cognitive radio paradigms in order to detect and protect primary transmissions. Most sensing schemes in the literature assume a time-invariant channel. However, when operating in low Signal-to-Noise Ratio (SNR) conditions, observation times are necessarily long and may become larger than the coherence time of the channel. In this paper the problem of detecting an unknown constant-magnitude waveform in frequency-flat time-varying channels with noise background of unknown variance is considered. The channel is modeled using a basis expansion model (BEM) with random coefficients. Adopting a generalized likelihood ratio (GLR) approach in order to deal with nuisance parameters, a non-convex optimization problem results. We discuss different possibilities to circumvent this problem, including several low complexity approximations to the GLR test as well as an efficient fixed-point iterative method to obtain the true GLR statistic. The approximations exhibit a performance ceiling in terms of probability of detection as the SNR increases, whereas the true GLR test does not. Thus, the proposed fixed-point iteration constitutes the preferred choice in applications requiring a high probability of detection.</description><identifier>ISSN: 2327-1671</identifier><identifier>ISBN: 1467318779</identifier><identifier>ISBN: 9781467318778</identifier><identifier>EISSN: 2327-1698</identifier><identifier>EISBN: 9781467318761</identifier><identifier>EISBN: 1467318760</identifier><identifier>EISBN: 9781467318785</identifier><identifier>EISBN: 1467318787</identifier><identifier>DOI: 10.1109/CIP.2012.6232933</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation methods ; Conferences ; Detectors ; Doppler effect ; Mathematical model ; Signal to noise ratio ; Vectors</subject><ispartof>2012 3rd International Workshop on Cognitive Information Processing (CIP), 2012, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6232933$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54553,54918,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6232933$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Romero, D.</creatorcontrib><creatorcontrib>Lopez-Valcarce, R.</creatorcontrib><title>Detection of unknown constant magnitude signals in time-varying channels</title><title>2012 3rd International Workshop on Cognitive Information Processing (CIP)</title><addtitle>CIP</addtitle><description>Spectrum sensing constitutes a key ingredient in many cognitive radio paradigms in order to detect and protect primary transmissions. Most sensing schemes in the literature assume a time-invariant channel. However, when operating in low Signal-to-Noise Ratio (SNR) conditions, observation times are necessarily long and may become larger than the coherence time of the channel. In this paper the problem of detecting an unknown constant-magnitude waveform in frequency-flat time-varying channels with noise background of unknown variance is considered. The channel is modeled using a basis expansion model (BEM) with random coefficients. Adopting a generalized likelihood ratio (GLR) approach in order to deal with nuisance parameters, a non-convex optimization problem results. We discuss different possibilities to circumvent this problem, including several low complexity approximations to the GLR test as well as an efficient fixed-point iterative method to obtain the true GLR statistic. The approximations exhibit a performance ceiling in terms of probability of detection as the SNR increases, whereas the true GLR test does not. Thus, the proposed fixed-point iteration constitutes the preferred choice in applications requiring a high probability of detection.</description><subject>Approximation methods</subject><subject>Conferences</subject><subject>Detectors</subject><subject>Doppler effect</subject><subject>Mathematical model</subject><subject>Signal to noise ratio</subject><subject>Vectors</subject><issn>2327-1671</issn><issn>2327-1698</issn><isbn>1467318779</isbn><isbn>9781467318778</isbn><isbn>9781467318761</isbn><isbn>1467318760</isbn><isbn>9781467318785</isbn><isbn>1467318787</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo90MtOwzAUBFDzkigleyQ2_oGEazvxY4lCoZUqwaL7ynacYGhuUOOC-HsiUVjN4kij0RByw6BgDMxdvXopODBeSC64EeKEZEZpVkolmFaSnZLZBCpn0ugzcvUHypz_g2KXJBvHNwBgoKtKwowsH0IKPsUB6dDSA77j8IXUDzgmi4n2tsOYDk2gY-zQ7kYakabYh_zT7r8jdtS_WsSwG6_JRTt5yI45J5vHxaZe5uvnp1V9v86jgZRz5Z1rFLO2sj4IcK4sjRHAg2iNE01rTCO15JVuK9Eobzi3zstSWwnS2VLMye1vbQwhbD_2sZ92bI-fiB_a2lGI</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Romero, D.</creator><creator>Lopez-Valcarce, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201205</creationdate><title>Detection of unknown constant magnitude signals in time-varying channels</title><author>Romero, D. ; Lopez-Valcarce, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-27cbbd71aa5ace30bb4499302e3f9b3df99d686258f53d7c922abc648a606ba43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Approximation methods</topic><topic>Conferences</topic><topic>Detectors</topic><topic>Doppler effect</topic><topic>Mathematical model</topic><topic>Signal to noise ratio</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Romero, D.</creatorcontrib><creatorcontrib>Lopez-Valcarce, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Romero, D.</au><au>Lopez-Valcarce, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detection of unknown constant magnitude signals in time-varying channels</atitle><btitle>2012 3rd International Workshop on Cognitive Information Processing (CIP)</btitle><stitle>CIP</stitle><date>2012-05</date><risdate>2012</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>2327-1671</issn><eissn>2327-1698</eissn><isbn>1467318779</isbn><isbn>9781467318778</isbn><eisbn>9781467318761</eisbn><eisbn>1467318760</eisbn><eisbn>9781467318785</eisbn><eisbn>1467318787</eisbn><abstract>Spectrum sensing constitutes a key ingredient in many cognitive radio paradigms in order to detect and protect primary transmissions. Most sensing schemes in the literature assume a time-invariant channel. However, when operating in low Signal-to-Noise Ratio (SNR) conditions, observation times are necessarily long and may become larger than the coherence time of the channel. In this paper the problem of detecting an unknown constant-magnitude waveform in frequency-flat time-varying channels with noise background of unknown variance is considered. The channel is modeled using a basis expansion model (BEM) with random coefficients. Adopting a generalized likelihood ratio (GLR) approach in order to deal with nuisance parameters, a non-convex optimization problem results. We discuss different possibilities to circumvent this problem, including several low complexity approximations to the GLR test as well as an efficient fixed-point iterative method to obtain the true GLR statistic. The approximations exhibit a performance ceiling in terms of probability of detection as the SNR increases, whereas the true GLR test does not. Thus, the proposed fixed-point iteration constitutes the preferred choice in applications requiring a high probability of detection.</abstract><pub>IEEE</pub><doi>10.1109/CIP.2012.6232933</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-1671 |
ispartof | 2012 3rd International Workshop on Cognitive Information Processing (CIP), 2012, p.1-6 |
issn | 2327-1671 2327-1698 |
language | eng |
recordid | cdi_ieee_primary_6232933 |
source | IEEE Xplore All Conference Series |
subjects | Approximation methods Conferences Detectors Doppler effect Mathematical model Signal to noise ratio Vectors |
title | Detection of unknown constant magnitude signals in time-varying channels |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T11%3A28%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detection%20of%20unknown%20constant%20magnitude%20signals%20in%20time-varying%20channels&rft.btitle=2012%203rd%20International%20Workshop%20on%20Cognitive%20Information%20Processing%20(CIP)&rft.au=Romero,%20D.&rft.date=2012-05&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=2327-1671&rft.eissn=2327-1698&rft.isbn=1467318779&rft.isbn_list=9781467318778&rft_id=info:doi/10.1109/CIP.2012.6232933&rft.eisbn=9781467318761&rft.eisbn_list=1467318760&rft.eisbn_list=9781467318785&rft.eisbn_list=1467318787&rft_dat=%3Cieee_CHZPO%3E6232933%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-27cbbd71aa5ace30bb4499302e3f9b3df99d686258f53d7c922abc648a606ba43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6232933&rfr_iscdi=true |