Loading…
The recognition of train wheel tread damages based on PSO-RBFNN algorithm
In order to the recognition of the train wheel tread damages, the pattern recognition method of the train wheel tread damages based on PSO-RBFNN was developed. The algorithm uses PSO-RBFNN algorithm to optimize center and spread of RBFNN, the connection weight value is sovled by least squares method...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1095 |
container_issue | |
container_start_page | 1093 |
container_title | |
container_volume | |
creator | Zhao Yong Ye Hong Kang Zheng-sheng Shi Song-shan Zhou Lin |
description | In order to the recognition of the train wheel tread damages, the pattern recognition method of the train wheel tread damages based on PSO-RBFNN was developed. The algorithm uses PSO-RBFNN algorithm to optimize center and spread of RBFNN, the connection weight value is sovled by least squares method. Compared with the traditional RBFNN,BP and GA-RBFNN, the experiment results show that the recognition rate of testing samples is higher than the traditional RBFNN, BP and GA-RBFNN, the evolutional generations of PSO-RBFNN algorithm were less than RBFNN, BP and GA-RBFNN. |
doi_str_mv | 10.1109/ICNC.2012.6234662 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6234662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6234662</ieee_id><sourcerecordid>6234662</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-208b7d10945f6f254de914bafbe5287fee5212cbd61c2558be1ea5c2bfe186123</originalsourceid><addsrcrecordid>eNpVUMFKxDAUjKjgsvYDxEt-oDXvNWnaoxZXC0tXtPclaV_aSLeVtiD-vQX34lzmDQzDvGHsDkQEILKHIi_zCAVglGAskwQvWJDpFKTSGiHG9PKfFvKKbRCUDjOl1A0L5vlTrNAK0kRuWFF1xCeqx3bwix8HPjq-TMYP_Lsj6tebTMMbczItzdyamRq-ut4-DuH7064suenbcfJLd7pl1870MwVn3rJq91zlr-H-8FLkj_vQZ2IJUaRWN-sjUrnEoZINZSCtcZYUptrRSoC1bRKoUanUEpBRNVpHa2HAeMvu_2I9ER2_Jn8y08_xvEX8C8V6TxE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The recognition of train wheel tread damages based on PSO-RBFNN algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhao Yong ; Ye Hong ; Kang Zheng-sheng ; Shi Song-shan ; Zhou Lin</creator><creatorcontrib>Zhao Yong ; Ye Hong ; Kang Zheng-sheng ; Shi Song-shan ; Zhou Lin</creatorcontrib><description>In order to the recognition of the train wheel tread damages, the pattern recognition method of the train wheel tread damages based on PSO-RBFNN was developed. The algorithm uses PSO-RBFNN algorithm to optimize center and spread of RBFNN, the connection weight value is sovled by least squares method. Compared with the traditional RBFNN,BP and GA-RBFNN, the experiment results show that the recognition rate of testing samples is higher than the traditional RBFNN, BP and GA-RBFNN, the evolutional generations of PSO-RBFNN algorithm were less than RBFNN, BP and GA-RBFNN.</description><identifier>ISSN: 2157-9555</identifier><identifier>ISBN: 9781457721304</identifier><identifier>ISBN: 1457721309</identifier><identifier>EISBN: 9781457721328</identifier><identifier>EISBN: 1457721325</identifier><identifier>EISBN: 9781457721335</identifier><identifier>EISBN: 1457721333</identifier><identifier>DOI: 10.1109/ICNC.2012.6234662</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Feature extraction ; Inspection ; Pattern recognition ; PSORBFNN ; recognition ; Signal processing algorithms ; train wheel ; Training ; tread damage ; Wheels</subject><ispartof>2012 8th International Conference on Natural Computation, 2012, p.1093-1095</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6234662$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6234662$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao Yong</creatorcontrib><creatorcontrib>Ye Hong</creatorcontrib><creatorcontrib>Kang Zheng-sheng</creatorcontrib><creatorcontrib>Shi Song-shan</creatorcontrib><creatorcontrib>Zhou Lin</creatorcontrib><title>The recognition of train wheel tread damages based on PSO-RBFNN algorithm</title><title>2012 8th International Conference on Natural Computation</title><addtitle>ICNC</addtitle><description>In order to the recognition of the train wheel tread damages, the pattern recognition method of the train wheel tread damages based on PSO-RBFNN was developed. The algorithm uses PSO-RBFNN algorithm to optimize center and spread of RBFNN, the connection weight value is sovled by least squares method. Compared with the traditional RBFNN,BP and GA-RBFNN, the experiment results show that the recognition rate of testing samples is higher than the traditional RBFNN, BP and GA-RBFNN, the evolutional generations of PSO-RBFNN algorithm were less than RBFNN, BP and GA-RBFNN.</description><subject>Accuracy</subject><subject>Feature extraction</subject><subject>Inspection</subject><subject>Pattern recognition</subject><subject>PSORBFNN</subject><subject>recognition</subject><subject>Signal processing algorithms</subject><subject>train wheel</subject><subject>Training</subject><subject>tread damage</subject><subject>Wheels</subject><issn>2157-9555</issn><isbn>9781457721304</isbn><isbn>1457721309</isbn><isbn>9781457721328</isbn><isbn>1457721325</isbn><isbn>9781457721335</isbn><isbn>1457721333</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVUMFKxDAUjKjgsvYDxEt-oDXvNWnaoxZXC0tXtPclaV_aSLeVtiD-vQX34lzmDQzDvGHsDkQEILKHIi_zCAVglGAskwQvWJDpFKTSGiHG9PKfFvKKbRCUDjOl1A0L5vlTrNAK0kRuWFF1xCeqx3bwix8HPjq-TMYP_Lsj6tebTMMbczItzdyamRq-ut4-DuH7064suenbcfJLd7pl1870MwVn3rJq91zlr-H-8FLkj_vQZ2IJUaRWN-sjUrnEoZINZSCtcZYUptrRSoC1bRKoUanUEpBRNVpHa2HAeMvu_2I9ER2_Jn8y08_xvEX8C8V6TxE</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Zhao Yong</creator><creator>Ye Hong</creator><creator>Kang Zheng-sheng</creator><creator>Shi Song-shan</creator><creator>Zhou Lin</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201205</creationdate><title>The recognition of train wheel tread damages based on PSO-RBFNN algorithm</title><author>Zhao Yong ; Ye Hong ; Kang Zheng-sheng ; Shi Song-shan ; Zhou Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-208b7d10945f6f254de914bafbe5287fee5212cbd61c2558be1ea5c2bfe186123</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Feature extraction</topic><topic>Inspection</topic><topic>Pattern recognition</topic><topic>PSORBFNN</topic><topic>recognition</topic><topic>Signal processing algorithms</topic><topic>train wheel</topic><topic>Training</topic><topic>tread damage</topic><topic>Wheels</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhao Yong</creatorcontrib><creatorcontrib>Ye Hong</creatorcontrib><creatorcontrib>Kang Zheng-sheng</creatorcontrib><creatorcontrib>Shi Song-shan</creatorcontrib><creatorcontrib>Zhou Lin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao Yong</au><au>Ye Hong</au><au>Kang Zheng-sheng</au><au>Shi Song-shan</au><au>Zhou Lin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The recognition of train wheel tread damages based on PSO-RBFNN algorithm</atitle><btitle>2012 8th International Conference on Natural Computation</btitle><stitle>ICNC</stitle><date>2012-05</date><risdate>2012</risdate><spage>1093</spage><epage>1095</epage><pages>1093-1095</pages><issn>2157-9555</issn><isbn>9781457721304</isbn><isbn>1457721309</isbn><eisbn>9781457721328</eisbn><eisbn>1457721325</eisbn><eisbn>9781457721335</eisbn><eisbn>1457721333</eisbn><abstract>In order to the recognition of the train wheel tread damages, the pattern recognition method of the train wheel tread damages based on PSO-RBFNN was developed. The algorithm uses PSO-RBFNN algorithm to optimize center and spread of RBFNN, the connection weight value is sovled by least squares method. Compared with the traditional RBFNN,BP and GA-RBFNN, the experiment results show that the recognition rate of testing samples is higher than the traditional RBFNN, BP and GA-RBFNN, the evolutional generations of PSO-RBFNN algorithm were less than RBFNN, BP and GA-RBFNN.</abstract><pub>IEEE</pub><doi>10.1109/ICNC.2012.6234662</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2157-9555 |
ispartof | 2012 8th International Conference on Natural Computation, 2012, p.1093-1095 |
issn | 2157-9555 |
language | eng |
recordid | cdi_ieee_primary_6234662 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy Feature extraction Inspection Pattern recognition PSORBFNN recognition Signal processing algorithms train wheel Training tread damage Wheels |
title | The recognition of train wheel tread damages based on PSO-RBFNN algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A09%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20recognition%20of%20train%20wheel%20tread%20damages%20based%20on%20PSO-RBFNN%20algorithm&rft.btitle=2012%208th%20International%20Conference%20on%20Natural%20Computation&rft.au=Zhao%20Yong&rft.date=2012-05&rft.spage=1093&rft.epage=1095&rft.pages=1093-1095&rft.issn=2157-9555&rft.isbn=9781457721304&rft.isbn_list=1457721309&rft_id=info:doi/10.1109/ICNC.2012.6234662&rft.eisbn=9781457721328&rft.eisbn_list=1457721325&rft.eisbn_list=9781457721335&rft.eisbn_list=1457721333&rft_dat=%3Cieee_6IE%3E6234662%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-208b7d10945f6f254de914bafbe5287fee5212cbd61c2558be1ea5c2bfe186123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6234662&rfr_iscdi=true |