Loading…
Feature ranking based nested support vector machine ensemble for medical image classification
This paper presents a method for classification of structural magnetic resonance images (MRI) of the brain. An ensemble of linear support vector machine classifiers (SVMs) is used for classifying a subject as either patient or normal control. Image voxels are first ranked based on the voxel wise t-s...
Saved in:
Published in: | 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI) 2012-01, p.146-149 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c377t-edf39f5546e4e9f88c7644d80754a634c31822ea8b145354307ad7b9cdf468773 |
---|---|
cites | |
container_end_page | 149 |
container_issue | |
container_start_page | 146 |
container_title | 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI) |
container_volume | |
creator | Varol, E. Gaonkar, B. Erus, G. Schultz, R. Davatzikos, C. |
description | This paper presents a method for classification of structural magnetic resonance images (MRI) of the brain. An ensemble of linear support vector machine classifiers (SVMs) is used for classifying a subject as either patient or normal control. Image voxels are first ranked based on the voxel wise t-statistics between the voxel intensity values and class labels. Then voxel subsets are selected based on the rank value using a forward feature selection scheme. Finally, an SVM classifier is trained on each subset of image voxels. The class label of a test subject is calculated by combining individual decisions of the SVM classifiers using a voting mechanism. The method is applied for classifying patients with neurological diseases such as Alzheimer's disease (AD) and autism spectrum disorder (ASD). The results on both datasets demonstrate superior performance as compared to two state of the art methods for medical image classification. |
doi_str_mv | 10.1109/ISBI.2012.6235505 |
format | article |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_6235505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6235505</ieee_id><sourcerecordid>1826580001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-edf39f5546e4e9f88c7644d80754a634c31822ea8b145354307ad7b9cdf468773</originalsourceid><addsrcrecordid>eNpVUdtKw0AQXW94qf0AEWQffWnN3jKbF0HFS0HwQQVfJGw2k3Y13dRsIvj3rrQWnZeBOYdz5swQcsSSMWNJdjZ5vJyMecL4OOVCqURtkGEGmkkFwLTSepPss0yqkZaKb5GDXwBetlcAZFzvkWEIb0kskFIkcpfscaFBcJ3tk9cbNF3fIm2Nf3d-SgsTsKQeQxdb6BeLpu3oJ9quaenc2JnzSNEHnBc10upniKWzpqZubqZIbW1CcFWcdK7xh2SnMnXA4aoPyPPN9dPV3ej-4XZydXE_sgKgG2FZiaxSSqYoMau0tpBKWeoElDSpkFYwzTkaXcSEQsUQYEooMltWMtUAYkDOl7qLvoj7WPRda-p80cal2q-8MS7_j3g3y6fNZy6AKeAqCpyuBNrmo4_h87kLFuvaeGz6kEf_VOl4QhapJ3-91ia_N42E4yXBIeIaXn1QfAMN9Ima</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826580001</pqid></control><display><type>article</type><title>Feature ranking based nested support vector machine ensemble for medical image classification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Varol, E. ; Gaonkar, B. ; Erus, G. ; Schultz, R. ; Davatzikos, C.</creator><creatorcontrib>Varol, E. ; Gaonkar, B. ; Erus, G. ; Schultz, R. ; Davatzikos, C.</creatorcontrib><description>This paper presents a method for classification of structural magnetic resonance images (MRI) of the brain. An ensemble of linear support vector machine classifiers (SVMs) is used for classifying a subject as either patient or normal control. Image voxels are first ranked based on the voxel wise t-statistics between the voxel intensity values and class labels. Then voxel subsets are selected based on the rank value using a forward feature selection scheme. Finally, an SVM classifier is trained on each subset of image voxels. The class label of a test subject is calculated by combining individual decisions of the SVM classifiers using a voting mechanism. The method is applied for classifying patients with neurological diseases such as Alzheimer's disease (AD) and autism spectrum disorder (ASD). The results on both datasets demonstrate superior performance as compared to two state of the art methods for medical image classification.</description><identifier>ISSN: 1945-7928</identifier><identifier>ISBN: 145771857X</identifier><identifier>ISBN: 9781457718571</identifier><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 9781457718588</identifier><identifier>EISBN: 9781457718564</identifier><identifier>EISBN: 1457718588</identifier><identifier>EISBN: 1457718561</identifier><identifier>DOI: 10.1109/ISBI.2012.6235505</identifier><identifier>PMID: 23873289</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Biomedical imaging ; Classification ; Diseases ; Ensemble SVM ; Feature extraction ; Feature ranking ; MRI ; Support vector machines ; Training ; Variable speed drives</subject><ispartof>2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), 2012-01, p.146-149</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-edf39f5546e4e9f88c7644d80754a634c31822ea8b145354307ad7b9cdf468773</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6235505$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,314,780,784,789,790,885,2058,27924,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6235505$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23873289$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Varol, E.</creatorcontrib><creatorcontrib>Gaonkar, B.</creatorcontrib><creatorcontrib>Erus, G.</creatorcontrib><creatorcontrib>Schultz, R.</creatorcontrib><creatorcontrib>Davatzikos, C.</creatorcontrib><title>Feature ranking based nested support vector machine ensemble for medical image classification</title><title>2012 9th IEEE International Symposium on Biomedical Imaging (ISBI)</title><addtitle>ISBI</addtitle><addtitle>Proc IEEE Int Symp Biomed Imaging</addtitle><description>This paper presents a method for classification of structural magnetic resonance images (MRI) of the brain. An ensemble of linear support vector machine classifiers (SVMs) is used for classifying a subject as either patient or normal control. Image voxels are first ranked based on the voxel wise t-statistics between the voxel intensity values and class labels. Then voxel subsets are selected based on the rank value using a forward feature selection scheme. Finally, an SVM classifier is trained on each subset of image voxels. The class label of a test subject is calculated by combining individual decisions of the SVM classifiers using a voting mechanism. The method is applied for classifying patients with neurological diseases such as Alzheimer's disease (AD) and autism spectrum disorder (ASD). The results on both datasets demonstrate superior performance as compared to two state of the art methods for medical image classification.</description><subject>Accuracy</subject><subject>Biomedical imaging</subject><subject>Classification</subject><subject>Diseases</subject><subject>Ensemble SVM</subject><subject>Feature extraction</subject><subject>Feature ranking</subject><subject>MRI</subject><subject>Support vector machines</subject><subject>Training</subject><subject>Variable speed drives</subject><issn>1945-7928</issn><issn>1945-8452</issn><isbn>145771857X</isbn><isbn>9781457718571</isbn><isbn>9781457718588</isbn><isbn>9781457718564</isbn><isbn>1457718588</isbn><isbn>1457718561</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><recordid>eNpVUdtKw0AQXW94qf0AEWQffWnN3jKbF0HFS0HwQQVfJGw2k3Y13dRsIvj3rrQWnZeBOYdz5swQcsSSMWNJdjZ5vJyMecL4OOVCqURtkGEGmkkFwLTSepPss0yqkZaKb5GDXwBetlcAZFzvkWEIb0kskFIkcpfscaFBcJ3tk9cbNF3fIm2Nf3d-SgsTsKQeQxdb6BeLpu3oJ9quaenc2JnzSNEHnBc10upniKWzpqZubqZIbW1CcFWcdK7xh2SnMnXA4aoPyPPN9dPV3ej-4XZydXE_sgKgG2FZiaxSSqYoMau0tpBKWeoElDSpkFYwzTkaXcSEQsUQYEooMltWMtUAYkDOl7qLvoj7WPRda-p80cal2q-8MS7_j3g3y6fNZy6AKeAqCpyuBNrmo4_h87kLFuvaeGz6kEf_VOl4QhapJ3-91ia_N42E4yXBIeIaXn1QfAMN9Ima</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Varol, E.</creator><creator>Gaonkar, B.</creator><creator>Erus, G.</creator><creator>Schultz, R.</creator><creator>Davatzikos, C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120101</creationdate><title>Feature ranking based nested support vector machine ensemble for medical image classification</title><author>Varol, E. ; Gaonkar, B. ; Erus, G. ; Schultz, R. ; Davatzikos, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-edf39f5546e4e9f88c7644d80754a634c31822ea8b145354307ad7b9cdf468773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Biomedical imaging</topic><topic>Classification</topic><topic>Diseases</topic><topic>Ensemble SVM</topic><topic>Feature extraction</topic><topic>Feature ranking</topic><topic>MRI</topic><topic>Support vector machines</topic><topic>Training</topic><topic>Variable speed drives</topic><toplevel>online_resources</toplevel><creatorcontrib>Varol, E.</creatorcontrib><creatorcontrib>Gaonkar, B.</creatorcontrib><creatorcontrib>Erus, G.</creatorcontrib><creatorcontrib>Schultz, R.</creatorcontrib><creatorcontrib>Davatzikos, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>2012 9th IEEE International Symposium on Biomedical Imaging (ISBI)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Varol, E.</au><au>Gaonkar, B.</au><au>Erus, G.</au><au>Schultz, R.</au><au>Davatzikos, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature ranking based nested support vector machine ensemble for medical image classification</atitle><jtitle>2012 9th IEEE International Symposium on Biomedical Imaging (ISBI)</jtitle><stitle>ISBI</stitle><addtitle>Proc IEEE Int Symp Biomed Imaging</addtitle><date>2012-01-01</date><risdate>2012</risdate><spage>146</spage><epage>149</epage><pages>146-149</pages><issn>1945-7928</issn><eissn>1945-8452</eissn><isbn>145771857X</isbn><isbn>9781457718571</isbn><eisbn>9781457718588</eisbn><eisbn>9781457718564</eisbn><eisbn>1457718588</eisbn><eisbn>1457718561</eisbn><abstract>This paper presents a method for classification of structural magnetic resonance images (MRI) of the brain. An ensemble of linear support vector machine classifiers (SVMs) is used for classifying a subject as either patient or normal control. Image voxels are first ranked based on the voxel wise t-statistics between the voxel intensity values and class labels. Then voxel subsets are selected based on the rank value using a forward feature selection scheme. Finally, an SVM classifier is trained on each subset of image voxels. The class label of a test subject is calculated by combining individual decisions of the SVM classifiers using a voting mechanism. The method is applied for classifying patients with neurological diseases such as Alzheimer's disease (AD) and autism spectrum disorder (ASD). The results on both datasets demonstrate superior performance as compared to two state of the art methods for medical image classification.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>23873289</pmid><doi>10.1109/ISBI.2012.6235505</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1945-7928 |
ispartof | 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), 2012-01, p.146-149 |
issn | 1945-7928 1945-8452 |
language | eng |
recordid | cdi_ieee_primary_6235505 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy Biomedical imaging Classification Diseases Ensemble SVM Feature extraction Feature ranking MRI Support vector machines Training Variable speed drives |
title | Feature ranking based nested support vector machine ensemble for medical image classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A11%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20ranking%20based%20nested%20support%20vector%20machine%20ensemble%20for%20medical%20image%20classification&rft.jtitle=2012%209th%20IEEE%20International%20Symposium%20on%20Biomedical%20Imaging%20(ISBI)&rft.au=Varol,%20E.&rft.date=2012-01-01&rft.spage=146&rft.epage=149&rft.pages=146-149&rft.issn=1945-7928&rft.eissn=1945-8452&rft.isbn=145771857X&rft.isbn_list=9781457718571&rft_id=info:doi/10.1109/ISBI.2012.6235505&rft.eisbn=9781457718588&rft.eisbn_list=9781457718564&rft.eisbn_list=1457718588&rft.eisbn_list=1457718561&rft_dat=%3Cproquest_6IE%3E1826580001%3C/proquest_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c377t-edf39f5546e4e9f88c7644d80754a634c31822ea8b145354307ad7b9cdf468773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1826580001&rft_id=info:pmid/23873289&rft_ieee_id=6235505&rfr_iscdi=true |