Loading…

Feature ranking based nested support vector machine ensemble for medical image classification

This paper presents a method for classification of structural magnetic resonance images (MRI) of the brain. An ensemble of linear support vector machine classifiers (SVMs) is used for classifying a subject as either patient or normal control. Image voxels are first ranked based on the voxel wise t-s...

Full description

Saved in:
Bibliographic Details
Published in:2012 9th IEEE International Symposium on Biomedical Imaging (ISBI) 2012-01, p.146-149
Main Authors: Varol, E., Gaonkar, B., Erus, G., Schultz, R., Davatzikos, C.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c377t-edf39f5546e4e9f88c7644d80754a634c31822ea8b145354307ad7b9cdf468773
cites
container_end_page 149
container_issue
container_start_page 146
container_title 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI)
container_volume
creator Varol, E.
Gaonkar, B.
Erus, G.
Schultz, R.
Davatzikos, C.
description This paper presents a method for classification of structural magnetic resonance images (MRI) of the brain. An ensemble of linear support vector machine classifiers (SVMs) is used for classifying a subject as either patient or normal control. Image voxels are first ranked based on the voxel wise t-statistics between the voxel intensity values and class labels. Then voxel subsets are selected based on the rank value using a forward feature selection scheme. Finally, an SVM classifier is trained on each subset of image voxels. The class label of a test subject is calculated by combining individual decisions of the SVM classifiers using a voting mechanism. The method is applied for classifying patients with neurological diseases such as Alzheimer's disease (AD) and autism spectrum disorder (ASD). The results on both datasets demonstrate superior performance as compared to two state of the art methods for medical image classification.
doi_str_mv 10.1109/ISBI.2012.6235505
format article
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_6235505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6235505</ieee_id><sourcerecordid>1826580001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-edf39f5546e4e9f88c7644d80754a634c31822ea8b145354307ad7b9cdf468773</originalsourceid><addsrcrecordid>eNpVUdtKw0AQXW94qf0AEWQffWnN3jKbF0HFS0HwQQVfJGw2k3Y13dRsIvj3rrQWnZeBOYdz5swQcsSSMWNJdjZ5vJyMecL4OOVCqURtkGEGmkkFwLTSepPss0yqkZaKb5GDXwBetlcAZFzvkWEIb0kskFIkcpfscaFBcJ3tk9cbNF3fIm2Nf3d-SgsTsKQeQxdb6BeLpu3oJ9quaenc2JnzSNEHnBc10upniKWzpqZubqZIbW1CcFWcdK7xh2SnMnXA4aoPyPPN9dPV3ej-4XZydXE_sgKgG2FZiaxSSqYoMau0tpBKWeoElDSpkFYwzTkaXcSEQsUQYEooMltWMtUAYkDOl7qLvoj7WPRda-p80cal2q-8MS7_j3g3y6fNZy6AKeAqCpyuBNrmo4_h87kLFuvaeGz6kEf_VOl4QhapJ3-91ia_N42E4yXBIeIaXn1QfAMN9Ima</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826580001</pqid></control><display><type>article</type><title>Feature ranking based nested support vector machine ensemble for medical image classification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Varol, E. ; Gaonkar, B. ; Erus, G. ; Schultz, R. ; Davatzikos, C.</creator><creatorcontrib>Varol, E. ; Gaonkar, B. ; Erus, G. ; Schultz, R. ; Davatzikos, C.</creatorcontrib><description>This paper presents a method for classification of structural magnetic resonance images (MRI) of the brain. An ensemble of linear support vector machine classifiers (SVMs) is used for classifying a subject as either patient or normal control. Image voxels are first ranked based on the voxel wise t-statistics between the voxel intensity values and class labels. Then voxel subsets are selected based on the rank value using a forward feature selection scheme. Finally, an SVM classifier is trained on each subset of image voxels. The class label of a test subject is calculated by combining individual decisions of the SVM classifiers using a voting mechanism. The method is applied for classifying patients with neurological diseases such as Alzheimer's disease (AD) and autism spectrum disorder (ASD). The results on both datasets demonstrate superior performance as compared to two state of the art methods for medical image classification.</description><identifier>ISSN: 1945-7928</identifier><identifier>ISBN: 145771857X</identifier><identifier>ISBN: 9781457718571</identifier><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 9781457718588</identifier><identifier>EISBN: 9781457718564</identifier><identifier>EISBN: 1457718588</identifier><identifier>EISBN: 1457718561</identifier><identifier>DOI: 10.1109/ISBI.2012.6235505</identifier><identifier>PMID: 23873289</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Biomedical imaging ; Classification ; Diseases ; Ensemble SVM ; Feature extraction ; Feature ranking ; MRI ; Support vector machines ; Training ; Variable speed drives</subject><ispartof>2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), 2012-01, p.146-149</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-edf39f5546e4e9f88c7644d80754a634c31822ea8b145354307ad7b9cdf468773</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6235505$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,314,780,784,789,790,885,2058,27924,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6235505$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23873289$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Varol, E.</creatorcontrib><creatorcontrib>Gaonkar, B.</creatorcontrib><creatorcontrib>Erus, G.</creatorcontrib><creatorcontrib>Schultz, R.</creatorcontrib><creatorcontrib>Davatzikos, C.</creatorcontrib><title>Feature ranking based nested support vector machine ensemble for medical image classification</title><title>2012 9th IEEE International Symposium on Biomedical Imaging (ISBI)</title><addtitle>ISBI</addtitle><addtitle>Proc IEEE Int Symp Biomed Imaging</addtitle><description>This paper presents a method for classification of structural magnetic resonance images (MRI) of the brain. An ensemble of linear support vector machine classifiers (SVMs) is used for classifying a subject as either patient or normal control. Image voxels are first ranked based on the voxel wise t-statistics between the voxel intensity values and class labels. Then voxel subsets are selected based on the rank value using a forward feature selection scheme. Finally, an SVM classifier is trained on each subset of image voxels. The class label of a test subject is calculated by combining individual decisions of the SVM classifiers using a voting mechanism. The method is applied for classifying patients with neurological diseases such as Alzheimer's disease (AD) and autism spectrum disorder (ASD). The results on both datasets demonstrate superior performance as compared to two state of the art methods for medical image classification.</description><subject>Accuracy</subject><subject>Biomedical imaging</subject><subject>Classification</subject><subject>Diseases</subject><subject>Ensemble SVM</subject><subject>Feature extraction</subject><subject>Feature ranking</subject><subject>MRI</subject><subject>Support vector machines</subject><subject>Training</subject><subject>Variable speed drives</subject><issn>1945-7928</issn><issn>1945-8452</issn><isbn>145771857X</isbn><isbn>9781457718571</isbn><isbn>9781457718588</isbn><isbn>9781457718564</isbn><isbn>1457718588</isbn><isbn>1457718561</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><recordid>eNpVUdtKw0AQXW94qf0AEWQffWnN3jKbF0HFS0HwQQVfJGw2k3Y13dRsIvj3rrQWnZeBOYdz5swQcsSSMWNJdjZ5vJyMecL4OOVCqURtkGEGmkkFwLTSepPss0yqkZaKb5GDXwBetlcAZFzvkWEIb0kskFIkcpfscaFBcJ3tk9cbNF3fIm2Nf3d-SgsTsKQeQxdb6BeLpu3oJ9quaenc2JnzSNEHnBc10upniKWzpqZubqZIbW1CcFWcdK7xh2SnMnXA4aoPyPPN9dPV3ej-4XZydXE_sgKgG2FZiaxSSqYoMau0tpBKWeoElDSpkFYwzTkaXcSEQsUQYEooMltWMtUAYkDOl7qLvoj7WPRda-p80cal2q-8MS7_j3g3y6fNZy6AKeAqCpyuBNrmo4_h87kLFuvaeGz6kEf_VOl4QhapJ3-91ia_N42E4yXBIeIaXn1QfAMN9Ima</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Varol, E.</creator><creator>Gaonkar, B.</creator><creator>Erus, G.</creator><creator>Schultz, R.</creator><creator>Davatzikos, C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120101</creationdate><title>Feature ranking based nested support vector machine ensemble for medical image classification</title><author>Varol, E. ; Gaonkar, B. ; Erus, G. ; Schultz, R. ; Davatzikos, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-edf39f5546e4e9f88c7644d80754a634c31822ea8b145354307ad7b9cdf468773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Biomedical imaging</topic><topic>Classification</topic><topic>Diseases</topic><topic>Ensemble SVM</topic><topic>Feature extraction</topic><topic>Feature ranking</topic><topic>MRI</topic><topic>Support vector machines</topic><topic>Training</topic><topic>Variable speed drives</topic><toplevel>online_resources</toplevel><creatorcontrib>Varol, E.</creatorcontrib><creatorcontrib>Gaonkar, B.</creatorcontrib><creatorcontrib>Erus, G.</creatorcontrib><creatorcontrib>Schultz, R.</creatorcontrib><creatorcontrib>Davatzikos, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>2012 9th IEEE International Symposium on Biomedical Imaging (ISBI)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Varol, E.</au><au>Gaonkar, B.</au><au>Erus, G.</au><au>Schultz, R.</au><au>Davatzikos, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature ranking based nested support vector machine ensemble for medical image classification</atitle><jtitle>2012 9th IEEE International Symposium on Biomedical Imaging (ISBI)</jtitle><stitle>ISBI</stitle><addtitle>Proc IEEE Int Symp Biomed Imaging</addtitle><date>2012-01-01</date><risdate>2012</risdate><spage>146</spage><epage>149</epage><pages>146-149</pages><issn>1945-7928</issn><eissn>1945-8452</eissn><isbn>145771857X</isbn><isbn>9781457718571</isbn><eisbn>9781457718588</eisbn><eisbn>9781457718564</eisbn><eisbn>1457718588</eisbn><eisbn>1457718561</eisbn><abstract>This paper presents a method for classification of structural magnetic resonance images (MRI) of the brain. An ensemble of linear support vector machine classifiers (SVMs) is used for classifying a subject as either patient or normal control. Image voxels are first ranked based on the voxel wise t-statistics between the voxel intensity values and class labels. Then voxel subsets are selected based on the rank value using a forward feature selection scheme. Finally, an SVM classifier is trained on each subset of image voxels. The class label of a test subject is calculated by combining individual decisions of the SVM classifiers using a voting mechanism. The method is applied for classifying patients with neurological diseases such as Alzheimer's disease (AD) and autism spectrum disorder (ASD). The results on both datasets demonstrate superior performance as compared to two state of the art methods for medical image classification.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>23873289</pmid><doi>10.1109/ISBI.2012.6235505</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1945-7928
ispartof 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), 2012-01, p.146-149
issn 1945-7928
1945-8452
language eng
recordid cdi_ieee_primary_6235505
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Biomedical imaging
Classification
Diseases
Ensemble SVM
Feature extraction
Feature ranking
MRI
Support vector machines
Training
Variable speed drives
title Feature ranking based nested support vector machine ensemble for medical image classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A11%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20ranking%20based%20nested%20support%20vector%20machine%20ensemble%20for%20medical%20image%20classification&rft.jtitle=2012%209th%20IEEE%20International%20Symposium%20on%20Biomedical%20Imaging%20(ISBI)&rft.au=Varol,%20E.&rft.date=2012-01-01&rft.spage=146&rft.epage=149&rft.pages=146-149&rft.issn=1945-7928&rft.eissn=1945-8452&rft.isbn=145771857X&rft.isbn_list=9781457718571&rft_id=info:doi/10.1109/ISBI.2012.6235505&rft.eisbn=9781457718588&rft.eisbn_list=9781457718564&rft.eisbn_list=1457718588&rft.eisbn_list=1457718561&rft_dat=%3Cproquest_6IE%3E1826580001%3C/proquest_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c377t-edf39f5546e4e9f88c7644d80754a634c31822ea8b145354307ad7b9cdf468773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1826580001&rft_id=info:pmid/23873289&rft_ieee_id=6235505&rfr_iscdi=true