Loading…
Segmentation-free and multiscale-free extraction of medial information using Gradient Vector Flow - Application to vascular structures
Gradient Vector Flow has become a popular method to recover medial information in medical imaging, in particular for vessels centerline extraction. This renewed interest has been motivated by its ability to process gray-scale images without prior segmentation. However, another interesting property l...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Gradient Vector Flow has become a popular method to recover medial information in medical imaging, in particular for vessels centerline extraction. This renewed interest has been motivated by its ability to process gray-scale images without prior segmentation. However, another interesting property lies in the diffusion process used to solve the underlying variational problem. We propose a method to recover scale information in the context of vascular structures extraction, relying on analytical properties of the Gradient Vector Flow only, with no multiscale analysis. Through simple one-dimensional considerations, we demonstrate the ability of our approach to estimate the radii of the vessels with an error of 10% only in the presence of noise and less than 3% without noise. Our approach is evaluated on convolved bar-like templates and is illustrated on 2D X-ray angiographic images. |
---|---|
ISSN: | 1945-7928 1945-8452 |
DOI: | 10.1109/ISBI.2012.6235533 |