Loading…

An Adaptive Unscented Kalman Filter for tightly coupled INS/GPS integration

In order to overcome the various disadvantages of standalone INS and GPS, these systems are integrated using nonlinear estimation techniques. The standard and most widely used estimation algorithm for the INS/GPS integration is Extended Kalman Filter (EKF) which makes a first order approximation for...

Full description

Saved in:
Bibliographic Details
Main Authors: Akca, T., Demirekler, M.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 395
container_issue
container_start_page 389
container_title
container_volume
creator Akca, T.
Demirekler, M.
description In order to overcome the various disadvantages of standalone INS and GPS, these systems are integrated using nonlinear estimation techniques. The standard and most widely used estimation algorithm for the INS/GPS integration is Extended Kalman Filter (EKF) which makes a first order approximation for the nonlinearity involved. Unscented Kalman Filter (UKF) approaches this problem by carefully selecting deterministic sigma points from Gaussian distributions and propagating these points through the nonlinear function itself. Scaled Unscented Transformation (SUT) is one of the sigma point selection methods which give the opportunity to adjust the spread of sigma points and control the higher order errors by some design parameters. Determination of these design parameters is problem specific. In this paper, an adaptive approach in selecting SUT parameters is proposed for tightly-coupled INS/GPS integration. Results of the proposed method are compared with the EKF and UKF integration. It is observed that the Adaptive UKF has slightly improved the performance of the navigation system especially at the end of GPS outage periods.
doi_str_mv 10.1109/PLANS.2012.6236907
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6236907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6236907</ieee_id><sourcerecordid>6236907</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-3acf1e9247d3dc1c0d33d778c5da2469c7af0617a40f30a6bebc277f5e54056e3</originalsourceid><addsrcrecordid>eNpVkF1rwjAYhbMvmDj_wHaTP1BN8jZ5m8si04nFCZ2wO4lJ6jJqlTYb-O9XmAx2bs7F83AuDiGPnI05Z3qyLvJVORaMi7ESoDTDKzLSmPFUITDIEK7JQHAJCUid3fxjUt_-sez9noy67pP1QSkk8AFZ5g3NnTnF8O3ppumsb6J3dGnqg2noLNTRt7Q6tjSG_Uesz9Qev051byxW5WS-Lmno_X1rYjg2D-SuMnXnR5ceks3s-W36khSv88U0L5LAUcYEjK241yJFB85yyxyAQ8ysdEakSls0FVMcTcoqYEbt_M4KxEp6mTKpPAzJ0-9u8N5vT204mPa8vVwDP925Usk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An Adaptive Unscented Kalman Filter for tightly coupled INS/GPS integration</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Akca, T. ; Demirekler, M.</creator><creatorcontrib>Akca, T. ; Demirekler, M.</creatorcontrib><description>In order to overcome the various disadvantages of standalone INS and GPS, these systems are integrated using nonlinear estimation techniques. The standard and most widely used estimation algorithm for the INS/GPS integration is Extended Kalman Filter (EKF) which makes a first order approximation for the nonlinearity involved. Unscented Kalman Filter (UKF) approaches this problem by carefully selecting deterministic sigma points from Gaussian distributions and propagating these points through the nonlinear function itself. Scaled Unscented Transformation (SUT) is one of the sigma point selection methods which give the opportunity to adjust the spread of sigma points and control the higher order errors by some design parameters. Determination of these design parameters is problem specific. In this paper, an adaptive approach in selecting SUT parameters is proposed for tightly-coupled INS/GPS integration. Results of the proposed method are compared with the EKF and UKF integration. It is observed that the Adaptive UKF has slightly improved the performance of the navigation system especially at the end of GPS outage periods.</description><identifier>ISSN: 2153-358X</identifier><identifier>ISBN: 9781467303859</identifier><identifier>ISBN: 1467303852</identifier><identifier>EISSN: 2153-3598</identifier><identifier>EISBN: 9781467303873</identifier><identifier>EISBN: 9781467303866</identifier><identifier>EISBN: 1467303879</identifier><identifier>EISBN: 1467303860</identifier><identifier>DOI: 10.1109/PLANS.2012.6236907</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive Nonlinear Estimation ; EKF ; Global Positioning System ; INS/GPS ; Instruments ; Noise measurement ; UKF ; Unscented Transformation</subject><ispartof>Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium, 2012, p.389-395</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6236907$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6236907$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Akca, T.</creatorcontrib><creatorcontrib>Demirekler, M.</creatorcontrib><title>An Adaptive Unscented Kalman Filter for tightly coupled INS/GPS integration</title><title>Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium</title><addtitle>PLANS</addtitle><description>In order to overcome the various disadvantages of standalone INS and GPS, these systems are integrated using nonlinear estimation techniques. The standard and most widely used estimation algorithm for the INS/GPS integration is Extended Kalman Filter (EKF) which makes a first order approximation for the nonlinearity involved. Unscented Kalman Filter (UKF) approaches this problem by carefully selecting deterministic sigma points from Gaussian distributions and propagating these points through the nonlinear function itself. Scaled Unscented Transformation (SUT) is one of the sigma point selection methods which give the opportunity to adjust the spread of sigma points and control the higher order errors by some design parameters. Determination of these design parameters is problem specific. In this paper, an adaptive approach in selecting SUT parameters is proposed for tightly-coupled INS/GPS integration. Results of the proposed method are compared with the EKF and UKF integration. It is observed that the Adaptive UKF has slightly improved the performance of the navigation system especially at the end of GPS outage periods.</description><subject>Adaptive Nonlinear Estimation</subject><subject>EKF</subject><subject>Global Positioning System</subject><subject>INS/GPS</subject><subject>Instruments</subject><subject>Noise measurement</subject><subject>UKF</subject><subject>Unscented Transformation</subject><issn>2153-358X</issn><issn>2153-3598</issn><isbn>9781467303859</isbn><isbn>1467303852</isbn><isbn>9781467303873</isbn><isbn>9781467303866</isbn><isbn>1467303879</isbn><isbn>1467303860</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkF1rwjAYhbMvmDj_wHaTP1BN8jZ5m8si04nFCZ2wO4lJ6jJqlTYb-O9XmAx2bs7F83AuDiGPnI05Z3qyLvJVORaMi7ESoDTDKzLSmPFUITDIEK7JQHAJCUid3fxjUt_-sez9noy67pP1QSkk8AFZ5g3NnTnF8O3ppumsb6J3dGnqg2noLNTRt7Q6tjSG_Uesz9Qev051byxW5WS-Lmno_X1rYjg2D-SuMnXnR5ceks3s-W36khSv88U0L5LAUcYEjK241yJFB85yyxyAQ8ysdEakSls0FVMcTcoqYEbt_M4KxEp6mTKpPAzJ0-9u8N5vT204mPa8vVwDP925Usk</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Akca, T.</creator><creator>Demirekler, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201204</creationdate><title>An Adaptive Unscented Kalman Filter for tightly coupled INS/GPS integration</title><author>Akca, T. ; Demirekler, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-3acf1e9247d3dc1c0d33d778c5da2469c7af0617a40f30a6bebc277f5e54056e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptive Nonlinear Estimation</topic><topic>EKF</topic><topic>Global Positioning System</topic><topic>INS/GPS</topic><topic>Instruments</topic><topic>Noise measurement</topic><topic>UKF</topic><topic>Unscented Transformation</topic><toplevel>online_resources</toplevel><creatorcontrib>Akca, T.</creatorcontrib><creatorcontrib>Demirekler, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Akca, T.</au><au>Demirekler, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An Adaptive Unscented Kalman Filter for tightly coupled INS/GPS integration</atitle><btitle>Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium</btitle><stitle>PLANS</stitle><date>2012-04</date><risdate>2012</risdate><spage>389</spage><epage>395</epage><pages>389-395</pages><issn>2153-358X</issn><eissn>2153-3598</eissn><isbn>9781467303859</isbn><isbn>1467303852</isbn><eisbn>9781467303873</eisbn><eisbn>9781467303866</eisbn><eisbn>1467303879</eisbn><eisbn>1467303860</eisbn><abstract>In order to overcome the various disadvantages of standalone INS and GPS, these systems are integrated using nonlinear estimation techniques. The standard and most widely used estimation algorithm for the INS/GPS integration is Extended Kalman Filter (EKF) which makes a first order approximation for the nonlinearity involved. Unscented Kalman Filter (UKF) approaches this problem by carefully selecting deterministic sigma points from Gaussian distributions and propagating these points through the nonlinear function itself. Scaled Unscented Transformation (SUT) is one of the sigma point selection methods which give the opportunity to adjust the spread of sigma points and control the higher order errors by some design parameters. Determination of these design parameters is problem specific. In this paper, an adaptive approach in selecting SUT parameters is proposed for tightly-coupled INS/GPS integration. Results of the proposed method are compared with the EKF and UKF integration. It is observed that the Adaptive UKF has slightly improved the performance of the navigation system especially at the end of GPS outage periods.</abstract><pub>IEEE</pub><doi>10.1109/PLANS.2012.6236907</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-358X
ispartof Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium, 2012, p.389-395
issn 2153-358X
2153-3598
language eng
recordid cdi_ieee_primary_6236907
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive Nonlinear Estimation
EKF
Global Positioning System
INS/GPS
Instruments
Noise measurement
UKF
Unscented Transformation
title An Adaptive Unscented Kalman Filter for tightly coupled INS/GPS integration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T00%3A23%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20Adaptive%20Unscented%20Kalman%20Filter%20for%20tightly%20coupled%20INS/GPS%20integration&rft.btitle=Proceedings%20of%20the%202012%20IEEE/ION%20Position,%20Location%20and%20Navigation%20Symposium&rft.au=Akca,%20T.&rft.date=2012-04&rft.spage=389&rft.epage=395&rft.pages=389-395&rft.issn=2153-358X&rft.eissn=2153-3598&rft.isbn=9781467303859&rft.isbn_list=1467303852&rft_id=info:doi/10.1109/PLANS.2012.6236907&rft.eisbn=9781467303873&rft.eisbn_list=9781467303866&rft.eisbn_list=1467303879&rft.eisbn_list=1467303860&rft_dat=%3Cieee_6IE%3E6236907%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-3acf1e9247d3dc1c0d33d778c5da2469c7af0617a40f30a6bebc277f5e54056e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6236907&rfr_iscdi=true