Loading…
An Adaptive Unscented Kalman Filter for tightly coupled INS/GPS integration
In order to overcome the various disadvantages of standalone INS and GPS, these systems are integrated using nonlinear estimation techniques. The standard and most widely used estimation algorithm for the INS/GPS integration is Extended Kalman Filter (EKF) which makes a first order approximation for...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 395 |
container_issue | |
container_start_page | 389 |
container_title | |
container_volume | |
creator | Akca, T. Demirekler, M. |
description | In order to overcome the various disadvantages of standalone INS and GPS, these systems are integrated using nonlinear estimation techniques. The standard and most widely used estimation algorithm for the INS/GPS integration is Extended Kalman Filter (EKF) which makes a first order approximation for the nonlinearity involved. Unscented Kalman Filter (UKF) approaches this problem by carefully selecting deterministic sigma points from Gaussian distributions and propagating these points through the nonlinear function itself. Scaled Unscented Transformation (SUT) is one of the sigma point selection methods which give the opportunity to adjust the spread of sigma points and control the higher order errors by some design parameters. Determination of these design parameters is problem specific. In this paper, an adaptive approach in selecting SUT parameters is proposed for tightly-coupled INS/GPS integration. Results of the proposed method are compared with the EKF and UKF integration. It is observed that the Adaptive UKF has slightly improved the performance of the navigation system especially at the end of GPS outage periods. |
doi_str_mv | 10.1109/PLANS.2012.6236907 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6236907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6236907</ieee_id><sourcerecordid>6236907</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-3acf1e9247d3dc1c0d33d778c5da2469c7af0617a40f30a6bebc277f5e54056e3</originalsourceid><addsrcrecordid>eNpVkF1rwjAYhbMvmDj_wHaTP1BN8jZ5m8si04nFCZ2wO4lJ6jJqlTYb-O9XmAx2bs7F83AuDiGPnI05Z3qyLvJVORaMi7ESoDTDKzLSmPFUITDIEK7JQHAJCUid3fxjUt_-sez9noy67pP1QSkk8AFZ5g3NnTnF8O3ppumsb6J3dGnqg2noLNTRt7Q6tjSG_Uesz9Qev051byxW5WS-Lmno_X1rYjg2D-SuMnXnR5ceks3s-W36khSv88U0L5LAUcYEjK241yJFB85yyxyAQ8ysdEakSls0FVMcTcoqYEbt_M4KxEp6mTKpPAzJ0-9u8N5vT204mPa8vVwDP925Usk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An Adaptive Unscented Kalman Filter for tightly coupled INS/GPS integration</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Akca, T. ; Demirekler, M.</creator><creatorcontrib>Akca, T. ; Demirekler, M.</creatorcontrib><description>In order to overcome the various disadvantages of standalone INS and GPS, these systems are integrated using nonlinear estimation techniques. The standard and most widely used estimation algorithm for the INS/GPS integration is Extended Kalman Filter (EKF) which makes a first order approximation for the nonlinearity involved. Unscented Kalman Filter (UKF) approaches this problem by carefully selecting deterministic sigma points from Gaussian distributions and propagating these points through the nonlinear function itself. Scaled Unscented Transformation (SUT) is one of the sigma point selection methods which give the opportunity to adjust the spread of sigma points and control the higher order errors by some design parameters. Determination of these design parameters is problem specific. In this paper, an adaptive approach in selecting SUT parameters is proposed for tightly-coupled INS/GPS integration. Results of the proposed method are compared with the EKF and UKF integration. It is observed that the Adaptive UKF has slightly improved the performance of the navigation system especially at the end of GPS outage periods.</description><identifier>ISSN: 2153-358X</identifier><identifier>ISBN: 9781467303859</identifier><identifier>ISBN: 1467303852</identifier><identifier>EISSN: 2153-3598</identifier><identifier>EISBN: 9781467303873</identifier><identifier>EISBN: 9781467303866</identifier><identifier>EISBN: 1467303879</identifier><identifier>EISBN: 1467303860</identifier><identifier>DOI: 10.1109/PLANS.2012.6236907</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive Nonlinear Estimation ; EKF ; Global Positioning System ; INS/GPS ; Instruments ; Noise measurement ; UKF ; Unscented Transformation</subject><ispartof>Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium, 2012, p.389-395</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6236907$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6236907$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Akca, T.</creatorcontrib><creatorcontrib>Demirekler, M.</creatorcontrib><title>An Adaptive Unscented Kalman Filter for tightly coupled INS/GPS integration</title><title>Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium</title><addtitle>PLANS</addtitle><description>In order to overcome the various disadvantages of standalone INS and GPS, these systems are integrated using nonlinear estimation techniques. The standard and most widely used estimation algorithm for the INS/GPS integration is Extended Kalman Filter (EKF) which makes a first order approximation for the nonlinearity involved. Unscented Kalman Filter (UKF) approaches this problem by carefully selecting deterministic sigma points from Gaussian distributions and propagating these points through the nonlinear function itself. Scaled Unscented Transformation (SUT) is one of the sigma point selection methods which give the opportunity to adjust the spread of sigma points and control the higher order errors by some design parameters. Determination of these design parameters is problem specific. In this paper, an adaptive approach in selecting SUT parameters is proposed for tightly-coupled INS/GPS integration. Results of the proposed method are compared with the EKF and UKF integration. It is observed that the Adaptive UKF has slightly improved the performance of the navigation system especially at the end of GPS outage periods.</description><subject>Adaptive Nonlinear Estimation</subject><subject>EKF</subject><subject>Global Positioning System</subject><subject>INS/GPS</subject><subject>Instruments</subject><subject>Noise measurement</subject><subject>UKF</subject><subject>Unscented Transformation</subject><issn>2153-358X</issn><issn>2153-3598</issn><isbn>9781467303859</isbn><isbn>1467303852</isbn><isbn>9781467303873</isbn><isbn>9781467303866</isbn><isbn>1467303879</isbn><isbn>1467303860</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkF1rwjAYhbMvmDj_wHaTP1BN8jZ5m8si04nFCZ2wO4lJ6jJqlTYb-O9XmAx2bs7F83AuDiGPnI05Z3qyLvJVORaMi7ESoDTDKzLSmPFUITDIEK7JQHAJCUid3fxjUt_-sez9noy67pP1QSkk8AFZ5g3NnTnF8O3ppumsb6J3dGnqg2noLNTRt7Q6tjSG_Uesz9Qev051byxW5WS-Lmno_X1rYjg2D-SuMnXnR5ceks3s-W36khSv88U0L5LAUcYEjK241yJFB85yyxyAQ8ysdEakSls0FVMcTcoqYEbt_M4KxEp6mTKpPAzJ0-9u8N5vT204mPa8vVwDP925Usk</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Akca, T.</creator><creator>Demirekler, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201204</creationdate><title>An Adaptive Unscented Kalman Filter for tightly coupled INS/GPS integration</title><author>Akca, T. ; Demirekler, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-3acf1e9247d3dc1c0d33d778c5da2469c7af0617a40f30a6bebc277f5e54056e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptive Nonlinear Estimation</topic><topic>EKF</topic><topic>Global Positioning System</topic><topic>INS/GPS</topic><topic>Instruments</topic><topic>Noise measurement</topic><topic>UKF</topic><topic>Unscented Transformation</topic><toplevel>online_resources</toplevel><creatorcontrib>Akca, T.</creatorcontrib><creatorcontrib>Demirekler, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Akca, T.</au><au>Demirekler, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An Adaptive Unscented Kalman Filter for tightly coupled INS/GPS integration</atitle><btitle>Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium</btitle><stitle>PLANS</stitle><date>2012-04</date><risdate>2012</risdate><spage>389</spage><epage>395</epage><pages>389-395</pages><issn>2153-358X</issn><eissn>2153-3598</eissn><isbn>9781467303859</isbn><isbn>1467303852</isbn><eisbn>9781467303873</eisbn><eisbn>9781467303866</eisbn><eisbn>1467303879</eisbn><eisbn>1467303860</eisbn><abstract>In order to overcome the various disadvantages of standalone INS and GPS, these systems are integrated using nonlinear estimation techniques. The standard and most widely used estimation algorithm for the INS/GPS integration is Extended Kalman Filter (EKF) which makes a first order approximation for the nonlinearity involved. Unscented Kalman Filter (UKF) approaches this problem by carefully selecting deterministic sigma points from Gaussian distributions and propagating these points through the nonlinear function itself. Scaled Unscented Transformation (SUT) is one of the sigma point selection methods which give the opportunity to adjust the spread of sigma points and control the higher order errors by some design parameters. Determination of these design parameters is problem specific. In this paper, an adaptive approach in selecting SUT parameters is proposed for tightly-coupled INS/GPS integration. Results of the proposed method are compared with the EKF and UKF integration. It is observed that the Adaptive UKF has slightly improved the performance of the navigation system especially at the end of GPS outage periods.</abstract><pub>IEEE</pub><doi>10.1109/PLANS.2012.6236907</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2153-358X |
ispartof | Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium, 2012, p.389-395 |
issn | 2153-358X 2153-3598 |
language | eng |
recordid | cdi_ieee_primary_6236907 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Adaptive Nonlinear Estimation EKF Global Positioning System INS/GPS Instruments Noise measurement UKF Unscented Transformation |
title | An Adaptive Unscented Kalman Filter for tightly coupled INS/GPS integration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T00%3A23%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20Adaptive%20Unscented%20Kalman%20Filter%20for%20tightly%20coupled%20INS/GPS%20integration&rft.btitle=Proceedings%20of%20the%202012%20IEEE/ION%20Position,%20Location%20and%20Navigation%20Symposium&rft.au=Akca,%20T.&rft.date=2012-04&rft.spage=389&rft.epage=395&rft.pages=389-395&rft.issn=2153-358X&rft.eissn=2153-3598&rft.isbn=9781467303859&rft.isbn_list=1467303852&rft_id=info:doi/10.1109/PLANS.2012.6236907&rft.eisbn=9781467303873&rft.eisbn_list=9781467303866&rft.eisbn_list=1467303879&rft.eisbn_list=1467303860&rft_dat=%3Cieee_6IE%3E6236907%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-3acf1e9247d3dc1c0d33d778c5da2469c7af0617a40f30a6bebc277f5e54056e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6236907&rfr_iscdi=true |