Loading…

Random walks based multi-image segmentation: Quasiconvexity results and GPU-based solutions

We recast the Cosegmentation problem using Random Walker (RW) segmentation as the core segmentation algorithm, rather than the traditional MRF approach adopted in the literature so far. Our formulation is similar to previous approaches in the sense that it also permits Cosegmentation constraints (wh...

Full description

Saved in:
Bibliographic Details
Published in:2012 IEEE Conference on Computer Vision and Pattern Recognition 2012-01, Vol.2012, p.1656-1663
Main Authors: Collins, M. D., Jia Xu, Grady, L., Singh, V.
Format: Article
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We recast the Cosegmentation problem using Random Walker (RW) segmentation as the core segmentation algorithm, rather than the traditional MRF approach adopted in the literature so far. Our formulation is similar to previous approaches in the sense that it also permits Cosegmentation constraints (which impose consistency between the extracted objects from ≥ 2 images) using a nonparametric model. However, several previous nonparametric cosegmentation methods have the serious limitation that they require adding one auxiliary node (or variable) for every pair of pixels that are similar (which effectively limits such methods to describing only those objects that have high entropy appearance models). In contrast, our proposed model completely eliminates this restrictive dependence - the resulting improvements are quite significant. Our model further allows an optimization scheme exploiting quasiconvexity for model-based segmentation with no dependence on the scale of the segmented foreground. Finally, we show that the optimization can be expressed in terms of linear algebra operations on sparse matrices which are easily mapped to GPU architecture. We provide a highly specialized CUDA library for Cosegmentation exploiting this special structure, and report experimental results showing these advantages.
ISSN:1063-6919
1063-6919
DOI:10.1109/CVPR.2012.6247859