Loading…
RGB-(D) scene labeling: Features and algorithms
Scene labeling research has mostly focused on outdoor scenes, leaving the harder case of indoor scenes poorly understood. Microsoft Kinect dramatically changed the landscape, showing great potentials for RGB-D perception (color+depth). Our main objective is to empirically understand the promises and...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2766 |
container_issue | |
container_start_page | 2759 |
container_title | |
container_volume | |
creator | Xiaofeng Ren Liefeng Bo Fox, D. |
description | Scene labeling research has mostly focused on outdoor scenes, leaving the harder case of indoor scenes poorly understood. Microsoft Kinect dramatically changed the landscape, showing great potentials for RGB-D perception (color+depth). Our main objective is to empirically understand the promises and challenges of scene labeling with RGB-D. We use the NYU Depth Dataset as collected and analyzed by Silberman and Fergus [30]. For RGB-D features, we adapt the framework of kernel descriptors that converts local similarities (kernels) to patch descriptors. For contextual modeling, we combine two lines of approaches, one using a superpixel MRF, and the other using a segmentation tree. We find that (1) kernel descriptors are very effective in capturing appearance (RGB) and shape (D) similarities; (2) both superpixel MRF and segmentation tree are useful in modeling context; and (3) the key to labeling accuracy is the ability to efficiently train and test with large-scale data. We improve labeling accuracy on the NYU Dataset from 56.6% to 76.1%. We also apply our approach to image-only scene labeling and improve the accuracy on the Stanford Background Dataset from 79.4% to 82.9%. |
doi_str_mv | 10.1109/CVPR.2012.6247999 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6247999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6247999</ieee_id><sourcerecordid>6247999</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-3ed73b9d722e8d1b8fb2aeaf844471d33c6b7a45e7d18e11c0a8693ee77926ba3</originalsourceid><addsrcrecordid>eNo1j8FKAzEURSMqWOt8gLiZpS5mmpekeXnutNoqFJSibksyeVNHpqNMxoV_b8F6N5cDlwNXiHOQJYCkyezteVUqCaq0yiARHYhTMBY1KOXUocgI3T9bcyRGIK0uLAGdiCylD7nLbiFJjcRktbgtLu-u8lRxx3nrA7dNt7nO5-yH755T7ruY-3bz2TfD-zadiePat4mzfY_F6_z-ZfZQLJ8Wj7ObZdEATodCc0QdKKJS7CIEVwfl2dfOGIMQta5sQG-mjBEcA1TSO0uaGZGUDV6PxcWft2Hm9VffbH3_s97_1b9eH0UV</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>RGB-(D) scene labeling: Features and algorithms</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xiaofeng Ren ; Liefeng Bo ; Fox, D.</creator><creatorcontrib>Xiaofeng Ren ; Liefeng Bo ; Fox, D.</creatorcontrib><description>Scene labeling research has mostly focused on outdoor scenes, leaving the harder case of indoor scenes poorly understood. Microsoft Kinect dramatically changed the landscape, showing great potentials for RGB-D perception (color+depth). Our main objective is to empirically understand the promises and challenges of scene labeling with RGB-D. We use the NYU Depth Dataset as collected and analyzed by Silberman and Fergus [30]. For RGB-D features, we adapt the framework of kernel descriptors that converts local similarities (kernels) to patch descriptors. For contextual modeling, we combine two lines of approaches, one using a superpixel MRF, and the other using a segmentation tree. We find that (1) kernel descriptors are very effective in capturing appearance (RGB) and shape (D) similarities; (2) both superpixel MRF and segmentation tree are useful in modeling context; and (3) the key to labeling accuracy is the ability to efficiently train and test with large-scale data. We improve labeling accuracy on the NYU Dataset from 56.6% to 76.1%. We also apply our approach to image-only scene labeling and improve the accuracy on the Stanford Background Dataset from 79.4% to 82.9%.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 9781467312264</identifier><identifier>ISBN: 1467312266</identifier><identifier>EISBN: 1467312282</identifier><identifier>EISBN: 1467312274</identifier><identifier>EISBN: 9781467312271</identifier><identifier>EISBN: 9781467312288</identifier><identifier>DOI: 10.1109/CVPR.2012.6247999</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Context modeling ; Image color analysis ; Image segmentation ; Kernel ; Labeling ; Vegetation</subject><ispartof>2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, p.2759-2766</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6247999$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6247999$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiaofeng Ren</creatorcontrib><creatorcontrib>Liefeng Bo</creatorcontrib><creatorcontrib>Fox, D.</creatorcontrib><title>RGB-(D) scene labeling: Features and algorithms</title><title>2012 IEEE Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><description>Scene labeling research has mostly focused on outdoor scenes, leaving the harder case of indoor scenes poorly understood. Microsoft Kinect dramatically changed the landscape, showing great potentials for RGB-D perception (color+depth). Our main objective is to empirically understand the promises and challenges of scene labeling with RGB-D. We use the NYU Depth Dataset as collected and analyzed by Silberman and Fergus [30]. For RGB-D features, we adapt the framework of kernel descriptors that converts local similarities (kernels) to patch descriptors. For contextual modeling, we combine two lines of approaches, one using a superpixel MRF, and the other using a segmentation tree. We find that (1) kernel descriptors are very effective in capturing appearance (RGB) and shape (D) similarities; (2) both superpixel MRF and segmentation tree are useful in modeling context; and (3) the key to labeling accuracy is the ability to efficiently train and test with large-scale data. We improve labeling accuracy on the NYU Dataset from 56.6% to 76.1%. We also apply our approach to image-only scene labeling and improve the accuracy on the Stanford Background Dataset from 79.4% to 82.9%.</description><subject>Accuracy</subject><subject>Context modeling</subject><subject>Image color analysis</subject><subject>Image segmentation</subject><subject>Kernel</subject><subject>Labeling</subject><subject>Vegetation</subject><issn>1063-6919</issn><isbn>9781467312264</isbn><isbn>1467312266</isbn><isbn>1467312282</isbn><isbn>1467312274</isbn><isbn>9781467312271</isbn><isbn>9781467312288</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j8FKAzEURSMqWOt8gLiZpS5mmpekeXnutNoqFJSibksyeVNHpqNMxoV_b8F6N5cDlwNXiHOQJYCkyezteVUqCaq0yiARHYhTMBY1KOXUocgI3T9bcyRGIK0uLAGdiCylD7nLbiFJjcRktbgtLu-u8lRxx3nrA7dNt7nO5-yH755T7ruY-3bz2TfD-zadiePat4mzfY_F6_z-ZfZQLJ8Wj7ObZdEATodCc0QdKKJS7CIEVwfl2dfOGIMQta5sQG-mjBEcA1TSO0uaGZGUDV6PxcWft2Hm9VffbH3_s97_1b9eH0UV</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Xiaofeng Ren</creator><creator>Liefeng Bo</creator><creator>Fox, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201206</creationdate><title>RGB-(D) scene labeling: Features and algorithms</title><author>Xiaofeng Ren ; Liefeng Bo ; Fox, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-3ed73b9d722e8d1b8fb2aeaf844471d33c6b7a45e7d18e11c0a8693ee77926ba3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Context modeling</topic><topic>Image color analysis</topic><topic>Image segmentation</topic><topic>Kernel</topic><topic>Labeling</topic><topic>Vegetation</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiaofeng Ren</creatorcontrib><creatorcontrib>Liefeng Bo</creatorcontrib><creatorcontrib>Fox, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiaofeng Ren</au><au>Liefeng Bo</au><au>Fox, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>RGB-(D) scene labeling: Features and algorithms</atitle><btitle>2012 IEEE Conference on Computer Vision and Pattern Recognition</btitle><stitle>CVPR</stitle><date>2012-06</date><risdate>2012</risdate><spage>2759</spage><epage>2766</epage><pages>2759-2766</pages><issn>1063-6919</issn><isbn>9781467312264</isbn><isbn>1467312266</isbn><eisbn>1467312282</eisbn><eisbn>1467312274</eisbn><eisbn>9781467312271</eisbn><eisbn>9781467312288</eisbn><abstract>Scene labeling research has mostly focused on outdoor scenes, leaving the harder case of indoor scenes poorly understood. Microsoft Kinect dramatically changed the landscape, showing great potentials for RGB-D perception (color+depth). Our main objective is to empirically understand the promises and challenges of scene labeling with RGB-D. We use the NYU Depth Dataset as collected and analyzed by Silberman and Fergus [30]. For RGB-D features, we adapt the framework of kernel descriptors that converts local similarities (kernels) to patch descriptors. For contextual modeling, we combine two lines of approaches, one using a superpixel MRF, and the other using a segmentation tree. We find that (1) kernel descriptors are very effective in capturing appearance (RGB) and shape (D) similarities; (2) both superpixel MRF and segmentation tree are useful in modeling context; and (3) the key to labeling accuracy is the ability to efficiently train and test with large-scale data. We improve labeling accuracy on the NYU Dataset from 56.6% to 76.1%. We also apply our approach to image-only scene labeling and improve the accuracy on the Stanford Background Dataset from 79.4% to 82.9%.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2012.6247999</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6919 |
ispartof | 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, p.2759-2766 |
issn | 1063-6919 |
language | eng |
recordid | cdi_ieee_primary_6247999 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy Context modeling Image color analysis Image segmentation Kernel Labeling Vegetation |
title | RGB-(D) scene labeling: Features and algorithms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A49%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=RGB-(D)%20scene%20labeling:%20Features%20and%20algorithms&rft.btitle=2012%20IEEE%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Xiaofeng%20Ren&rft.date=2012-06&rft.spage=2759&rft.epage=2766&rft.pages=2759-2766&rft.issn=1063-6919&rft.isbn=9781467312264&rft.isbn_list=1467312266&rft_id=info:doi/10.1109/CVPR.2012.6247999&rft.eisbn=1467312282&rft.eisbn_list=1467312274&rft.eisbn_list=9781467312271&rft.eisbn_list=9781467312288&rft_dat=%3Cieee_6IE%3E6247999%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-3ed73b9d722e8d1b8fb2aeaf844471d33c6b7a45e7d18e11c0a8693ee77926ba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6247999&rfr_iscdi=true |