Loading…
Unsupervised clustering of people from 'skeleton' data
This paper investigates the possibility of recognising individual persons from their walking gait using three-dimensional 'skeleton' data from an inexpensive consumer-level sensor, the Microsoft 'Kinect'. In an experimental pilot study it is shown that the K-means algorithm - as...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper investigates the possibility of recognising individual persons from their walking gait using three-dimensional 'skeleton' data from an inexpensive consumer-level sensor, the Microsoft 'Kinect'. In an experimental pilot study it is shown that the K-means algorithm - as a candidate unsupervised clustering algorithm - is able to cluster gait samples from four persons with a nett accuracy of 43.6%. |
---|---|
ISSN: | 2167-2121 2167-2148 |
DOI: | 10.1145/2157689.2157767 |