Loading…

Similarity clustering for data fusion in Wireless Sensor Networks using k-means

Wireless Sensor Networks consist of a powerful technology for monitoring the physical world. Particularly, in-network data fusion techniques are very important to applications such as target classification and tracking to reduce the communication burden in these constrained networks. However, the ef...

Full description

Saved in:
Bibliographic Details
Main Authors: Ribas, A. D., Colonna, J. G., Figueiredo, C. M. S., Nakamura, E. F.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Wireless Sensor Networks consist of a powerful technology for monitoring the physical world. Particularly, in-network data fusion techniques are very important to applications such as target classification and tracking to reduce the communication burden in these constrained networks. However, the efficiency of the solution can be affected by the data correlation among several sensor nodes. Thus, the application of value fusion (for clusters of nodes with correlated measurements) and decision fusion (combining the local decisions of the clusters) is a common strategy. In this work, we propose an algorithm for properly selecting the groups of nodes with correlated measurements. Experiments show that our algorithm is 30% better than a solution that considers only the spatial coherence regions.
ISSN:2161-4393
2161-4407
DOI:10.1109/IJCNN.2012.6252430