Loading…

Increasing level of confidence of iris biometric matching

A key requirement of biometric matching is to identify people with high level of confidence. This confidence level indicates a degree that the biometric system can reliably decide whether a query biometric template belongs to a registered biometric template or not. This paper explores the use of a t...

Full description

Saved in:
Bibliographic Details
Main Authors: Sukarno, P., Bhattacharjee, N., Srinivasan, B.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Sukarno, P.
Bhattacharjee, N.
Srinivasan, B.
description A key requirement of biometric matching is to identify people with high level of confidence. This confidence level indicates a degree that the biometric system can reliably decide whether a query biometric template belongs to a registered biometric template or not. This paper explores the use of a template transformation and the longest common substring expression to tackle variability during biometric acquisition and increase the level of confidence of iris biometric matching. The transformation provided with a derivative of the registered template will initially convert the query template to a transformed template that can be used to perform an exact match. When the transformation has been performed, the longest common substring between the registered template and the transformed template is obtained. The proposed transformation will cause the intra-class distributions more homogeneous and push the distributions to a large similarity while the proposed longest common substring will push the inter-class distributions to a large dissimilarity thus minimizing the chance of false acceptances and increasing the separation between the intra-class and inter-class distributions. We extensively tested our proposed method using iris images from the commercial Bath dataset and found that the decidability index (d') and Fisher-ratio can be increased to 82.5 and 3401 respectively. Moreover, the success rate of the transformation to produce exact matches is 96.4%.
doi_str_mv 10.1109/IJCNN.2012.6252556
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6252556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6252556</ieee_id><sourcerecordid>6252556</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7b7c4a76de2dc299e3a8589132b1ad43d9734202b70612a4530af335446d2a773</originalsourceid><addsrcrecordid>eNpVkMtKxEAURNsXOIz5Ad3kBxL73tuP9FKCj8gwbnQ9dDo32pKHJEHw7x1xXFibojhFLUqIS5A5gHTX1WO53eYoAXODGrU2RyJxtgBlLIEqHB2LFYKBTClpT_6xwpz-MXJ0LpJ5fpd77RsIaiVcNYSJ_RyH17TjT-7SsU3DOLSx4SHwT4pTnNM6jj0vUwxp75fwtq9fiLPWdzMnB1-Ll7vb5_Ih2zzdV-XNJotg9ZLZ2gblrWkYm4DOMflCFw4Ia_CNosZZUiixttIAeqVJ-pZIK2Ua9NbSWlz97kZm3n1MsffT1-5wBH0DYaJLYA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Increasing level of confidence of iris biometric matching</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sukarno, P. ; Bhattacharjee, N. ; Srinivasan, B.</creator><creatorcontrib>Sukarno, P. ; Bhattacharjee, N. ; Srinivasan, B.</creatorcontrib><description>A key requirement of biometric matching is to identify people with high level of confidence. This confidence level indicates a degree that the biometric system can reliably decide whether a query biometric template belongs to a registered biometric template or not. This paper explores the use of a template transformation and the longest common substring expression to tackle variability during biometric acquisition and increase the level of confidence of iris biometric matching. The transformation provided with a derivative of the registered template will initially convert the query template to a transformed template that can be used to perform an exact match. When the transformation has been performed, the longest common substring between the registered template and the transformed template is obtained. The proposed transformation will cause the intra-class distributions more homogeneous and push the distributions to a large similarity while the proposed longest common substring will push the inter-class distributions to a large dissimilarity thus minimizing the chance of false acceptances and increasing the separation between the intra-class and inter-class distributions. We extensively tested our proposed method using iris images from the commercial Bath dataset and found that the decidability index (d') and Fisher-ratio can be increased to 82.5 and 3401 respectively. Moreover, the success rate of the transformation to produce exact matches is 96.4%.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISBN: 9781467314886</identifier><identifier>ISBN: 1467314889</identifier><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 9781467314893</identifier><identifier>EISBN: 9781467314909</identifier><identifier>EISBN: 1467314897</identifier><identifier>EISBN: 1467314900</identifier><identifier>DOI: 10.1109/IJCNN.2012.6252556</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bioinformatics ; confidence level ; Decoding ; Error correction codes ; High definition video ; iris biometric matching ; Iris recognition ; Noise ; template transformation ; the longest common substring</subject><ispartof>The 2012 International Joint Conference on Neural Networks (IJCNN), 2012, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6252556$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54534,54899,54911</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6252556$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sukarno, P.</creatorcontrib><creatorcontrib>Bhattacharjee, N.</creatorcontrib><creatorcontrib>Srinivasan, B.</creatorcontrib><title>Increasing level of confidence of iris biometric matching</title><title>The 2012 International Joint Conference on Neural Networks (IJCNN)</title><addtitle>IJCNN</addtitle><description>A key requirement of biometric matching is to identify people with high level of confidence. This confidence level indicates a degree that the biometric system can reliably decide whether a query biometric template belongs to a registered biometric template or not. This paper explores the use of a template transformation and the longest common substring expression to tackle variability during biometric acquisition and increase the level of confidence of iris biometric matching. The transformation provided with a derivative of the registered template will initially convert the query template to a transformed template that can be used to perform an exact match. When the transformation has been performed, the longest common substring between the registered template and the transformed template is obtained. The proposed transformation will cause the intra-class distributions more homogeneous and push the distributions to a large similarity while the proposed longest common substring will push the inter-class distributions to a large dissimilarity thus minimizing the chance of false acceptances and increasing the separation between the intra-class and inter-class distributions. We extensively tested our proposed method using iris images from the commercial Bath dataset and found that the decidability index (d') and Fisher-ratio can be increased to 82.5 and 3401 respectively. Moreover, the success rate of the transformation to produce exact matches is 96.4%.</description><subject>Bioinformatics</subject><subject>confidence level</subject><subject>Decoding</subject><subject>Error correction codes</subject><subject>High definition video</subject><subject>iris biometric matching</subject><subject>Iris recognition</subject><subject>Noise</subject><subject>template transformation</subject><subject>the longest common substring</subject><issn>2161-4393</issn><issn>2161-4407</issn><isbn>9781467314886</isbn><isbn>1467314889</isbn><isbn>9781467314893</isbn><isbn>9781467314909</isbn><isbn>1467314897</isbn><isbn>1467314900</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkMtKxEAURNsXOIz5Ad3kBxL73tuP9FKCj8gwbnQ9dDo32pKHJEHw7x1xXFibojhFLUqIS5A5gHTX1WO53eYoAXODGrU2RyJxtgBlLIEqHB2LFYKBTClpT_6xwpz-MXJ0LpJ5fpd77RsIaiVcNYSJ_RyH17TjT-7SsU3DOLSx4SHwT4pTnNM6jj0vUwxp75fwtq9fiLPWdzMnB1-Ll7vb5_Ih2zzdV-XNJotg9ZLZ2gblrWkYm4DOMflCFw4Ia_CNosZZUiixttIAeqVJ-pZIK2Ua9NbSWlz97kZm3n1MsffT1-5wBH0DYaJLYA</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Sukarno, P.</creator><creator>Bhattacharjee, N.</creator><creator>Srinivasan, B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201206</creationdate><title>Increasing level of confidence of iris biometric matching</title><author>Sukarno, P. ; Bhattacharjee, N. ; Srinivasan, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7b7c4a76de2dc299e3a8589132b1ad43d9734202b70612a4530af335446d2a773</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bioinformatics</topic><topic>confidence level</topic><topic>Decoding</topic><topic>Error correction codes</topic><topic>High definition video</topic><topic>iris biometric matching</topic><topic>Iris recognition</topic><topic>Noise</topic><topic>template transformation</topic><topic>the longest common substring</topic><toplevel>online_resources</toplevel><creatorcontrib>Sukarno, P.</creatorcontrib><creatorcontrib>Bhattacharjee, N.</creatorcontrib><creatorcontrib>Srinivasan, B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (IEEE/IET Electronic Library - IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sukarno, P.</au><au>Bhattacharjee, N.</au><au>Srinivasan, B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Increasing level of confidence of iris biometric matching</atitle><btitle>The 2012 International Joint Conference on Neural Networks (IJCNN)</btitle><stitle>IJCNN</stitle><date>2012-06</date><risdate>2012</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2161-4393</issn><eissn>2161-4407</eissn><isbn>9781467314886</isbn><isbn>1467314889</isbn><eisbn>9781467314893</eisbn><eisbn>9781467314909</eisbn><eisbn>1467314897</eisbn><eisbn>1467314900</eisbn><abstract>A key requirement of biometric matching is to identify people with high level of confidence. This confidence level indicates a degree that the biometric system can reliably decide whether a query biometric template belongs to a registered biometric template or not. This paper explores the use of a template transformation and the longest common substring expression to tackle variability during biometric acquisition and increase the level of confidence of iris biometric matching. The transformation provided with a derivative of the registered template will initially convert the query template to a transformed template that can be used to perform an exact match. When the transformation has been performed, the longest common substring between the registered template and the transformed template is obtained. The proposed transformation will cause the intra-class distributions more homogeneous and push the distributions to a large similarity while the proposed longest common substring will push the inter-class distributions to a large dissimilarity thus minimizing the chance of false acceptances and increasing the separation between the intra-class and inter-class distributions. We extensively tested our proposed method using iris images from the commercial Bath dataset and found that the decidability index (d') and Fisher-ratio can be increased to 82.5 and 3401 respectively. Moreover, the success rate of the transformation to produce exact matches is 96.4%.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2012.6252556</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-4393
ispartof The 2012 International Joint Conference on Neural Networks (IJCNN), 2012, p.1-8
issn 2161-4393
2161-4407
language eng
recordid cdi_ieee_primary_6252556
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bioinformatics
confidence level
Decoding
Error correction codes
High definition video
iris biometric matching
Iris recognition
Noise
template transformation
the longest common substring
title Increasing level of confidence of iris biometric matching
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T02%3A23%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Increasing%20level%20of%20confidence%20of%20iris%20biometric%20matching&rft.btitle=The%202012%20International%20Joint%20Conference%20on%20Neural%20Networks%20(IJCNN)&rft.au=Sukarno,%20P.&rft.date=2012-06&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=9781467314886&rft.isbn_list=1467314889&rft_id=info:doi/10.1109/IJCNN.2012.6252556&rft.eisbn=9781467314893&rft.eisbn_list=9781467314909&rft.eisbn_list=1467314897&rft.eisbn_list=1467314900&rft_dat=%3Cieee_6IE%3E6252556%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-7b7c4a76de2dc299e3a8589132b1ad43d9734202b70612a4530af335446d2a773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6252556&rfr_iscdi=true