Loading…

Optimizing energy output and layout costs for large wind farms using particle swarm optimization

The design of a wind farm involves several complex optimization problems. We consider the multi-objective optimization problem of maximizing the energy output under the consideration of wake effects and minimizing the cost of the turbines and land area used for the wind farm. We present an efficient...

Full description

Saved in:
Bibliographic Details
Main Authors: Veeramachaneni, K., Wagner, M., O'Reilly, U-M, Neumann, F.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 7
container_issue
container_start_page 1
container_title
container_volume
creator Veeramachaneni, K.
Wagner, M.
O'Reilly, U-M
Neumann, F.
description The design of a wind farm involves several complex optimization problems. We consider the multi-objective optimization problem of maximizing the energy output under the consideration of wake effects and minimizing the cost of the turbines and land area used for the wind farm. We present an efficient particle swarm optimization algorithm that computes a set of trade-off solutions for the given task. Our algorithm can be easily integrated into the layout process for developing wind farms and gives designers new insights into the trade-off between energy output and land area.
doi_str_mv 10.1109/CEC.2012.6253002
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6253002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6253002</ieee_id><sourcerecordid>6253002</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-44d9c8586dca24a6b89a2e05bebf67ce310ccb85d1689aef659c58041a102693</originalsourceid><addsrcrecordid>eNo9kEtrwzAQhNUXNE1zL_SiP2BXa-t5LCZpC4FccugtlWU5qMQPJJmQ_vqqJHQvy87HDMwi9AQkByDqpVpWeUGgyHnBSkKKK_QAlIsSGJHiGs1AUciSzm_-QbLdJkCkyoSQn_doEcI3SSMkABUz9LUZo-vcj-v32PbW7094mOI4Raz7Bh_0KV3YDCEG3A4-CX5v8dEl1mrfBTyFP-eofXTmYHE4JhUP50wd3dA_ortWH4JdXPYcbVfLbfWerTdvH9XrOnMgWMwobZSRTPLG6IJqXkulC0tYbeuWC2NLIMbUkjXAE7EtZ8owSShoSIVVOUfP51hnrd2N3nXan3aXR5W_dXFZ2g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimizing energy output and layout costs for large wind farms using particle swarm optimization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Veeramachaneni, K. ; Wagner, M. ; O'Reilly, U-M ; Neumann, F.</creator><creatorcontrib>Veeramachaneni, K. ; Wagner, M. ; O'Reilly, U-M ; Neumann, F.</creatorcontrib><description>The design of a wind farm involves several complex optimization problems. We consider the multi-objective optimization problem of maximizing the energy output under the consideration of wake effects and minimizing the cost of the turbines and land area used for the wind farm. We present an efficient particle swarm optimization algorithm that computes a set of trade-off solutions for the given task. Our algorithm can be easily integrated into the layout process for developing wind farms and gives designers new insights into the trade-off between energy output and land area.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 1467315109</identifier><identifier>ISBN: 9781467315104</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 1467315087</identifier><identifier>EISBN: 9781467315081</identifier><identifier>EISBN: 1467315095</identifier><identifier>EISBN: 9781467315098</identifier><identifier>DOI: 10.1109/CEC.2012.6253002</identifier><language>eng</language><publisher>IEEE</publisher><subject>Layout ; Optimization ; Particle swarm optimization ; renewable energy ; repair strategies ; Wind ; Wind farms ; Wind turbines</subject><ispartof>2012 IEEE Congress on Evolutionary Computation, 2012, p.1-7</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6253002$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54796,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6253002$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Veeramachaneni, K.</creatorcontrib><creatorcontrib>Wagner, M.</creatorcontrib><creatorcontrib>O'Reilly, U-M</creatorcontrib><creatorcontrib>Neumann, F.</creatorcontrib><title>Optimizing energy output and layout costs for large wind farms using particle swarm optimization</title><title>2012 IEEE Congress on Evolutionary Computation</title><addtitle>CEC</addtitle><description>The design of a wind farm involves several complex optimization problems. We consider the multi-objective optimization problem of maximizing the energy output under the consideration of wake effects and minimizing the cost of the turbines and land area used for the wind farm. We present an efficient particle swarm optimization algorithm that computes a set of trade-off solutions for the given task. Our algorithm can be easily integrated into the layout process for developing wind farms and gives designers new insights into the trade-off between energy output and land area.</description><subject>Layout</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>renewable energy</subject><subject>repair strategies</subject><subject>Wind</subject><subject>Wind farms</subject><subject>Wind turbines</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1467315109</isbn><isbn>9781467315104</isbn><isbn>1467315087</isbn><isbn>9781467315081</isbn><isbn>1467315095</isbn><isbn>9781467315098</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9kEtrwzAQhNUXNE1zL_SiP2BXa-t5LCZpC4FccugtlWU5qMQPJJmQ_vqqJHQvy87HDMwi9AQkByDqpVpWeUGgyHnBSkKKK_QAlIsSGJHiGs1AUciSzm_-QbLdJkCkyoSQn_doEcI3SSMkABUz9LUZo-vcj-v32PbW7094mOI4Raz7Bh_0KV3YDCEG3A4-CX5v8dEl1mrfBTyFP-eofXTmYHE4JhUP50wd3dA_ortWH4JdXPYcbVfLbfWerTdvH9XrOnMgWMwobZSRTPLG6IJqXkulC0tYbeuWC2NLIMbUkjXAE7EtZ8owSShoSIVVOUfP51hnrd2N3nXan3aXR5W_dXFZ2g</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Veeramachaneni, K.</creator><creator>Wagner, M.</creator><creator>O'Reilly, U-M</creator><creator>Neumann, F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201206</creationdate><title>Optimizing energy output and layout costs for large wind farms using particle swarm optimization</title><author>Veeramachaneni, K. ; Wagner, M. ; O'Reilly, U-M ; Neumann, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-44d9c8586dca24a6b89a2e05bebf67ce310ccb85d1689aef659c58041a102693</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Layout</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>renewable energy</topic><topic>repair strategies</topic><topic>Wind</topic><topic>Wind farms</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Veeramachaneni, K.</creatorcontrib><creatorcontrib>Wagner, M.</creatorcontrib><creatorcontrib>O'Reilly, U-M</creatorcontrib><creatorcontrib>Neumann, F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Veeramachaneni, K.</au><au>Wagner, M.</au><au>O'Reilly, U-M</au><au>Neumann, F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimizing energy output and layout costs for large wind farms using particle swarm optimization</atitle><btitle>2012 IEEE Congress on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2012-06</date><risdate>2012</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>1467315109</isbn><isbn>9781467315104</isbn><eisbn>1467315087</eisbn><eisbn>9781467315081</eisbn><eisbn>1467315095</eisbn><eisbn>9781467315098</eisbn><abstract>The design of a wind farm involves several complex optimization problems. We consider the multi-objective optimization problem of maximizing the energy output under the consideration of wake effects and minimizing the cost of the turbines and land area used for the wind farm. We present an efficient particle swarm optimization algorithm that computes a set of trade-off solutions for the given task. Our algorithm can be easily integrated into the layout process for developing wind farms and gives designers new insights into the trade-off between energy output and land area.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2012.6253002</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof 2012 IEEE Congress on Evolutionary Computation, 2012, p.1-7
issn 1089-778X
1941-0026
language eng
recordid cdi_ieee_primary_6253002
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Layout
Optimization
Particle swarm optimization
renewable energy
repair strategies
Wind
Wind farms
Wind turbines
title Optimizing energy output and layout costs for large wind farms using particle swarm optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A24%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimizing%20energy%20output%20and%20layout%20costs%20for%20large%20wind%20farms%20using%20particle%20swarm%20optimization&rft.btitle=2012%20IEEE%20Congress%20on%20Evolutionary%20Computation&rft.au=Veeramachaneni,%20K.&rft.date=2012-06&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=1467315109&rft.isbn_list=9781467315104&rft_id=info:doi/10.1109/CEC.2012.6253002&rft.eisbn=1467315087&rft.eisbn_list=9781467315081&rft.eisbn_list=1467315095&rft.eisbn_list=9781467315098&rft_dat=%3Cieee_6IE%3E6253002%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-44d9c8586dca24a6b89a2e05bebf67ce310ccb85d1689aef659c58041a102693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6253002&rfr_iscdi=true