Loading…
Optimizing energy output and layout costs for large wind farms using particle swarm optimization
The design of a wind farm involves several complex optimization problems. We consider the multi-objective optimization problem of maximizing the energy output under the consideration of wake effects and minimizing the cost of the turbines and land area used for the wind farm. We present an efficient...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 7 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Veeramachaneni, K. Wagner, M. O'Reilly, U-M Neumann, F. |
description | The design of a wind farm involves several complex optimization problems. We consider the multi-objective optimization problem of maximizing the energy output under the consideration of wake effects and minimizing the cost of the turbines and land area used for the wind farm. We present an efficient particle swarm optimization algorithm that computes a set of trade-off solutions for the given task. Our algorithm can be easily integrated into the layout process for developing wind farms and gives designers new insights into the trade-off between energy output and land area. |
doi_str_mv | 10.1109/CEC.2012.6253002 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6253002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6253002</ieee_id><sourcerecordid>6253002</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-44d9c8586dca24a6b89a2e05bebf67ce310ccb85d1689aef659c58041a102693</originalsourceid><addsrcrecordid>eNo9kEtrwzAQhNUXNE1zL_SiP2BXa-t5LCZpC4FccugtlWU5qMQPJJmQ_vqqJHQvy87HDMwi9AQkByDqpVpWeUGgyHnBSkKKK_QAlIsSGJHiGs1AUciSzm_-QbLdJkCkyoSQn_doEcI3SSMkABUz9LUZo-vcj-v32PbW7094mOI4Raz7Bh_0KV3YDCEG3A4-CX5v8dEl1mrfBTyFP-eofXTmYHE4JhUP50wd3dA_ortWH4JdXPYcbVfLbfWerTdvH9XrOnMgWMwobZSRTPLG6IJqXkulC0tYbeuWC2NLIMbUkjXAE7EtZ8owSShoSIVVOUfP51hnrd2N3nXan3aXR5W_dXFZ2g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimizing energy output and layout costs for large wind farms using particle swarm optimization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Veeramachaneni, K. ; Wagner, M. ; O'Reilly, U-M ; Neumann, F.</creator><creatorcontrib>Veeramachaneni, K. ; Wagner, M. ; O'Reilly, U-M ; Neumann, F.</creatorcontrib><description>The design of a wind farm involves several complex optimization problems. We consider the multi-objective optimization problem of maximizing the energy output under the consideration of wake effects and minimizing the cost of the turbines and land area used for the wind farm. We present an efficient particle swarm optimization algorithm that computes a set of trade-off solutions for the given task. Our algorithm can be easily integrated into the layout process for developing wind farms and gives designers new insights into the trade-off between energy output and land area.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 1467315109</identifier><identifier>ISBN: 9781467315104</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 1467315087</identifier><identifier>EISBN: 9781467315081</identifier><identifier>EISBN: 1467315095</identifier><identifier>EISBN: 9781467315098</identifier><identifier>DOI: 10.1109/CEC.2012.6253002</identifier><language>eng</language><publisher>IEEE</publisher><subject>Layout ; Optimization ; Particle swarm optimization ; renewable energy ; repair strategies ; Wind ; Wind farms ; Wind turbines</subject><ispartof>2012 IEEE Congress on Evolutionary Computation, 2012, p.1-7</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6253002$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54796,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6253002$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Veeramachaneni, K.</creatorcontrib><creatorcontrib>Wagner, M.</creatorcontrib><creatorcontrib>O'Reilly, U-M</creatorcontrib><creatorcontrib>Neumann, F.</creatorcontrib><title>Optimizing energy output and layout costs for large wind farms using particle swarm optimization</title><title>2012 IEEE Congress on Evolutionary Computation</title><addtitle>CEC</addtitle><description>The design of a wind farm involves several complex optimization problems. We consider the multi-objective optimization problem of maximizing the energy output under the consideration of wake effects and minimizing the cost of the turbines and land area used for the wind farm. We present an efficient particle swarm optimization algorithm that computes a set of trade-off solutions for the given task. Our algorithm can be easily integrated into the layout process for developing wind farms and gives designers new insights into the trade-off between energy output and land area.</description><subject>Layout</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>renewable energy</subject><subject>repair strategies</subject><subject>Wind</subject><subject>Wind farms</subject><subject>Wind turbines</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1467315109</isbn><isbn>9781467315104</isbn><isbn>1467315087</isbn><isbn>9781467315081</isbn><isbn>1467315095</isbn><isbn>9781467315098</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9kEtrwzAQhNUXNE1zL_SiP2BXa-t5LCZpC4FccugtlWU5qMQPJJmQ_vqqJHQvy87HDMwi9AQkByDqpVpWeUGgyHnBSkKKK_QAlIsSGJHiGs1AUciSzm_-QbLdJkCkyoSQn_doEcI3SSMkABUz9LUZo-vcj-v32PbW7094mOI4Raz7Bh_0KV3YDCEG3A4-CX5v8dEl1mrfBTyFP-eofXTmYHE4JhUP50wd3dA_ortWH4JdXPYcbVfLbfWerTdvH9XrOnMgWMwobZSRTPLG6IJqXkulC0tYbeuWC2NLIMbUkjXAE7EtZ8owSShoSIVVOUfP51hnrd2N3nXan3aXR5W_dXFZ2g</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Veeramachaneni, K.</creator><creator>Wagner, M.</creator><creator>O'Reilly, U-M</creator><creator>Neumann, F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201206</creationdate><title>Optimizing energy output and layout costs for large wind farms using particle swarm optimization</title><author>Veeramachaneni, K. ; Wagner, M. ; O'Reilly, U-M ; Neumann, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-44d9c8586dca24a6b89a2e05bebf67ce310ccb85d1689aef659c58041a102693</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Layout</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>renewable energy</topic><topic>repair strategies</topic><topic>Wind</topic><topic>Wind farms</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Veeramachaneni, K.</creatorcontrib><creatorcontrib>Wagner, M.</creatorcontrib><creatorcontrib>O'Reilly, U-M</creatorcontrib><creatorcontrib>Neumann, F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Veeramachaneni, K.</au><au>Wagner, M.</au><au>O'Reilly, U-M</au><au>Neumann, F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimizing energy output and layout costs for large wind farms using particle swarm optimization</atitle><btitle>2012 IEEE Congress on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2012-06</date><risdate>2012</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>1467315109</isbn><isbn>9781467315104</isbn><eisbn>1467315087</eisbn><eisbn>9781467315081</eisbn><eisbn>1467315095</eisbn><eisbn>9781467315098</eisbn><abstract>The design of a wind farm involves several complex optimization problems. We consider the multi-objective optimization problem of maximizing the energy output under the consideration of wake effects and minimizing the cost of the turbines and land area used for the wind farm. We present an efficient particle swarm optimization algorithm that computes a set of trade-off solutions for the given task. Our algorithm can be easily integrated into the layout process for developing wind farms and gives designers new insights into the trade-off between energy output and land area.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2012.6253002</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | 2012 IEEE Congress on Evolutionary Computation, 2012, p.1-7 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_ieee_primary_6253002 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Layout Optimization Particle swarm optimization renewable energy repair strategies Wind Wind farms Wind turbines |
title | Optimizing energy output and layout costs for large wind farms using particle swarm optimization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A24%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimizing%20energy%20output%20and%20layout%20costs%20for%20large%20wind%20farms%20using%20particle%20swarm%20optimization&rft.btitle=2012%20IEEE%20Congress%20on%20Evolutionary%20Computation&rft.au=Veeramachaneni,%20K.&rft.date=2012-06&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=1467315109&rft.isbn_list=9781467315104&rft_id=info:doi/10.1109/CEC.2012.6253002&rft.eisbn=1467315087&rft.eisbn_list=9781467315081&rft.eisbn_list=1467315095&rft.eisbn_list=9781467315098&rft_dat=%3Cieee_6IE%3E6253002%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-44d9c8586dca24a6b89a2e05bebf67ce310ccb85d1689aef659c58041a102693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6253002&rfr_iscdi=true |