Loading…
Computational emotion recognition using multimodal physiological signals: Elicited using Japanese kanji words
This paper investigates computational emotion recognition using multimodal physiological signals. Four physiological signs - plethysmogram, skin conductance change, respiration rate and skin temperature - are measured to evaluate three emotions: positive, negative and neutral. Psychophysical experim...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 620 |
container_issue | |
container_start_page | 615 |
container_title | |
container_volume | |
creator | Takahashi, K. Namikawa, S. Hashimoto, M. |
description | This paper investigates computational emotion recognition using multimodal physiological signals. Four physiological signs - plethysmogram, skin conductance change, respiration rate and skin temperature - are measured to evaluate three emotions: positive, negative and neutral. Psychophysical experiments are conducted using Japanese kanji words in order to excite emotions in subjects so as to elicit physiological signals. For computational emotion recognition, machine-learning approaches, such as multilayer neural networks, support vector machines, decision trees and random forests, are used to design emotion recognition systems and their characteristics are investigated. In computational experiments conducted for recognising emotions, support vector machines equipped with a Gaussian kernel function attain a maximum averaged recognition rate of around 40% for all three emotions and around 56% for two emotions (positive and negative). The results obtained in this study shows that using multimodal physiological signals with a machine-learning approach is feasible and suited for computational emotion recognition. |
doi_str_mv | 10.1109/TSP.2012.6256370 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6256370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6256370</ieee_id><sourcerecordid>6256370</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f37dd65f658cccde20a0be9a78c6a88e29df65fcc2ec370fd1c489cd2b481af43</originalsourceid><addsrcrecordid>eNo1UMFOwzAMDUJIwOgdiUt_oCVJ2zTlhqoxQJNAYpynLHGKR9tUTSu0vyfA8MXv2e9Ztgm5ZjRljFa3m7fXlFPGU8ELkZX0hFyyXJQZY0zwUxJVpfznZXFOIu_3NESoclFckK523TBPakLXqzaGzv2geATtmh5_8eyxb-JubifsnAmi4ePg0bWuQR2YxyY4_V28bFHjBOZoeFaD6sFD_Kn6PcZfbjT-ipzZoIXomBfk_WG5qR-T9cvqqb5fJxiWnBKblcaIwopCaq0NcKroDipVSi2UlMArE3pWaw46nGwN07mstOG7XDJl82xBbv7mIgBshxE7NR62xw9l3-ztXZ0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Computational emotion recognition using multimodal physiological signals: Elicited using Japanese kanji words</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Takahashi, K. ; Namikawa, S. ; Hashimoto, M.</creator><creatorcontrib>Takahashi, K. ; Namikawa, S. ; Hashimoto, M.</creatorcontrib><description>This paper investigates computational emotion recognition using multimodal physiological signals. Four physiological signs - plethysmogram, skin conductance change, respiration rate and skin temperature - are measured to evaluate three emotions: positive, negative and neutral. Psychophysical experiments are conducted using Japanese kanji words in order to excite emotions in subjects so as to elicit physiological signals. For computational emotion recognition, machine-learning approaches, such as multilayer neural networks, support vector machines, decision trees and random forests, are used to design emotion recognition systems and their characteristics are investigated. In computational experiments conducted for recognising emotions, support vector machines equipped with a Gaussian kernel function attain a maximum averaged recognition rate of around 40% for all three emotions and around 56% for two emotions (positive and negative). The results obtained in this study shows that using multimodal physiological signals with a machine-learning approach is feasible and suited for computational emotion recognition.</description><identifier>ISBN: 9781467311175</identifier><identifier>ISBN: 1467311170</identifier><identifier>EISBN: 1467311162</identifier><identifier>EISBN: 9781467311168</identifier><identifier>EISBN: 9781467311182</identifier><identifier>EISBN: 1467311189</identifier><identifier>DOI: 10.1109/TSP.2012.6256370</identifier><language>eng</language><publisher>IEEE</publisher><subject>Emotion ; Emotion recognition ; Humans ; Kanji words ; Kernel ; Machine learning ; Physiological signal ; Physiology ; Sensors ; Skin ; Temperature measurement</subject><ispartof>2012 35th International Conference on Telecommunications and Signal Processing (TSP), 2012, p.615-620</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6256370$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6256370$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Takahashi, K.</creatorcontrib><creatorcontrib>Namikawa, S.</creatorcontrib><creatorcontrib>Hashimoto, M.</creatorcontrib><title>Computational emotion recognition using multimodal physiological signals: Elicited using Japanese kanji words</title><title>2012 35th International Conference on Telecommunications and Signal Processing (TSP)</title><addtitle>TSP</addtitle><description>This paper investigates computational emotion recognition using multimodal physiological signals. Four physiological signs - plethysmogram, skin conductance change, respiration rate and skin temperature - are measured to evaluate three emotions: positive, negative and neutral. Psychophysical experiments are conducted using Japanese kanji words in order to excite emotions in subjects so as to elicit physiological signals. For computational emotion recognition, machine-learning approaches, such as multilayer neural networks, support vector machines, decision trees and random forests, are used to design emotion recognition systems and their characteristics are investigated. In computational experiments conducted for recognising emotions, support vector machines equipped with a Gaussian kernel function attain a maximum averaged recognition rate of around 40% for all three emotions and around 56% for two emotions (positive and negative). The results obtained in this study shows that using multimodal physiological signals with a machine-learning approach is feasible and suited for computational emotion recognition.</description><subject>Emotion</subject><subject>Emotion recognition</subject><subject>Humans</subject><subject>Kanji words</subject><subject>Kernel</subject><subject>Machine learning</subject><subject>Physiological signal</subject><subject>Physiology</subject><subject>Sensors</subject><subject>Skin</subject><subject>Temperature measurement</subject><isbn>9781467311175</isbn><isbn>1467311170</isbn><isbn>1467311162</isbn><isbn>9781467311168</isbn><isbn>9781467311182</isbn><isbn>1467311189</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1UMFOwzAMDUJIwOgdiUt_oCVJ2zTlhqoxQJNAYpynLHGKR9tUTSu0vyfA8MXv2e9Ztgm5ZjRljFa3m7fXlFPGU8ELkZX0hFyyXJQZY0zwUxJVpfznZXFOIu_3NESoclFckK523TBPakLXqzaGzv2geATtmh5_8eyxb-JubifsnAmi4ePg0bWuQR2YxyY4_V28bFHjBOZoeFaD6sFD_Kn6PcZfbjT-ipzZoIXomBfk_WG5qR-T9cvqqb5fJxiWnBKblcaIwopCaq0NcKroDipVSi2UlMArE3pWaw46nGwN07mstOG7XDJl82xBbv7mIgBshxE7NR62xw9l3-ztXZ0</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Takahashi, K.</creator><creator>Namikawa, S.</creator><creator>Hashimoto, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201207</creationdate><title>Computational emotion recognition using multimodal physiological signals: Elicited using Japanese kanji words</title><author>Takahashi, K. ; Namikawa, S. ; Hashimoto, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f37dd65f658cccde20a0be9a78c6a88e29df65fcc2ec370fd1c489cd2b481af43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Emotion</topic><topic>Emotion recognition</topic><topic>Humans</topic><topic>Kanji words</topic><topic>Kernel</topic><topic>Machine learning</topic><topic>Physiological signal</topic><topic>Physiology</topic><topic>Sensors</topic><topic>Skin</topic><topic>Temperature measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Takahashi, K.</creatorcontrib><creatorcontrib>Namikawa, S.</creatorcontrib><creatorcontrib>Hashimoto, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Takahashi, K.</au><au>Namikawa, S.</au><au>Hashimoto, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Computational emotion recognition using multimodal physiological signals: Elicited using Japanese kanji words</atitle><btitle>2012 35th International Conference on Telecommunications and Signal Processing (TSP)</btitle><stitle>TSP</stitle><date>2012-07</date><risdate>2012</risdate><spage>615</spage><epage>620</epage><pages>615-620</pages><isbn>9781467311175</isbn><isbn>1467311170</isbn><eisbn>1467311162</eisbn><eisbn>9781467311168</eisbn><eisbn>9781467311182</eisbn><eisbn>1467311189</eisbn><abstract>This paper investigates computational emotion recognition using multimodal physiological signals. Four physiological signs - plethysmogram, skin conductance change, respiration rate and skin temperature - are measured to evaluate three emotions: positive, negative and neutral. Psychophysical experiments are conducted using Japanese kanji words in order to excite emotions in subjects so as to elicit physiological signals. For computational emotion recognition, machine-learning approaches, such as multilayer neural networks, support vector machines, decision trees and random forests, are used to design emotion recognition systems and their characteristics are investigated. In computational experiments conducted for recognising emotions, support vector machines equipped with a Gaussian kernel function attain a maximum averaged recognition rate of around 40% for all three emotions and around 56% for two emotions (positive and negative). The results obtained in this study shows that using multimodal physiological signals with a machine-learning approach is feasible and suited for computational emotion recognition.</abstract><pub>IEEE</pub><doi>10.1109/TSP.2012.6256370</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467311175 |
ispartof | 2012 35th International Conference on Telecommunications and Signal Processing (TSP), 2012, p.615-620 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6256370 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Emotion Emotion recognition Humans Kanji words Kernel Machine learning Physiological signal Physiology Sensors Skin Temperature measurement |
title | Computational emotion recognition using multimodal physiological signals: Elicited using Japanese kanji words |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A23%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Computational%20emotion%20recognition%20using%20multimodal%20physiological%20signals:%20Elicited%20using%20Japanese%20kanji%20words&rft.btitle=2012%2035th%20International%20Conference%20on%20Telecommunications%20and%20Signal%20Processing%20(TSP)&rft.au=Takahashi,%20K.&rft.date=2012-07&rft.spage=615&rft.epage=620&rft.pages=615-620&rft.isbn=9781467311175&rft.isbn_list=1467311170&rft_id=info:doi/10.1109/TSP.2012.6256370&rft.eisbn=1467311162&rft.eisbn_list=9781467311168&rft.eisbn_list=9781467311182&rft.eisbn_list=1467311189&rft_dat=%3Cieee_6IE%3E6256370%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-f37dd65f658cccde20a0be9a78c6a88e29df65fcc2ec370fd1c489cd2b481af43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6256370&rfr_iscdi=true |