Loading…

Computational emotion recognition using multimodal physiological signals: Elicited using Japanese kanji words

This paper investigates computational emotion recognition using multimodal physiological signals. Four physiological signs - plethysmogram, skin conductance change, respiration rate and skin temperature - are measured to evaluate three emotions: positive, negative and neutral. Psychophysical experim...

Full description

Saved in:
Bibliographic Details
Main Authors: Takahashi, K., Namikawa, S., Hashimoto, M.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 620
container_issue
container_start_page 615
container_title
container_volume
creator Takahashi, K.
Namikawa, S.
Hashimoto, M.
description This paper investigates computational emotion recognition using multimodal physiological signals. Four physiological signs - plethysmogram, skin conductance change, respiration rate and skin temperature - are measured to evaluate three emotions: positive, negative and neutral. Psychophysical experiments are conducted using Japanese kanji words in order to excite emotions in subjects so as to elicit physiological signals. For computational emotion recognition, machine-learning approaches, such as multilayer neural networks, support vector machines, decision trees and random forests, are used to design emotion recognition systems and their characteristics are investigated. In computational experiments conducted for recognising emotions, support vector machines equipped with a Gaussian kernel function attain a maximum averaged recognition rate of around 40% for all three emotions and around 56% for two emotions (positive and negative). The results obtained in this study shows that using multimodal physiological signals with a machine-learning approach is feasible and suited for computational emotion recognition.
doi_str_mv 10.1109/TSP.2012.6256370
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6256370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6256370</ieee_id><sourcerecordid>6256370</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f37dd65f658cccde20a0be9a78c6a88e29df65fcc2ec370fd1c489cd2b481af43</originalsourceid><addsrcrecordid>eNo1UMFOwzAMDUJIwOgdiUt_oCVJ2zTlhqoxQJNAYpynLHGKR9tUTSu0vyfA8MXv2e9Ztgm5ZjRljFa3m7fXlFPGU8ELkZX0hFyyXJQZY0zwUxJVpfznZXFOIu_3NESoclFckK523TBPakLXqzaGzv2geATtmh5_8eyxb-JubifsnAmi4ePg0bWuQR2YxyY4_V28bFHjBOZoeFaD6sFD_Kn6PcZfbjT-ipzZoIXomBfk_WG5qR-T9cvqqb5fJxiWnBKblcaIwopCaq0NcKroDipVSi2UlMArE3pWaw46nGwN07mstOG7XDJl82xBbv7mIgBshxE7NR62xw9l3-ztXZ0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Computational emotion recognition using multimodal physiological signals: Elicited using Japanese kanji words</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Takahashi, K. ; Namikawa, S. ; Hashimoto, M.</creator><creatorcontrib>Takahashi, K. ; Namikawa, S. ; Hashimoto, M.</creatorcontrib><description>This paper investigates computational emotion recognition using multimodal physiological signals. Four physiological signs - plethysmogram, skin conductance change, respiration rate and skin temperature - are measured to evaluate three emotions: positive, negative and neutral. Psychophysical experiments are conducted using Japanese kanji words in order to excite emotions in subjects so as to elicit physiological signals. For computational emotion recognition, machine-learning approaches, such as multilayer neural networks, support vector machines, decision trees and random forests, are used to design emotion recognition systems and their characteristics are investigated. In computational experiments conducted for recognising emotions, support vector machines equipped with a Gaussian kernel function attain a maximum averaged recognition rate of around 40% for all three emotions and around 56% for two emotions (positive and negative). The results obtained in this study shows that using multimodal physiological signals with a machine-learning approach is feasible and suited for computational emotion recognition.</description><identifier>ISBN: 9781467311175</identifier><identifier>ISBN: 1467311170</identifier><identifier>EISBN: 1467311162</identifier><identifier>EISBN: 9781467311168</identifier><identifier>EISBN: 9781467311182</identifier><identifier>EISBN: 1467311189</identifier><identifier>DOI: 10.1109/TSP.2012.6256370</identifier><language>eng</language><publisher>IEEE</publisher><subject>Emotion ; Emotion recognition ; Humans ; Kanji words ; Kernel ; Machine learning ; Physiological signal ; Physiology ; Sensors ; Skin ; Temperature measurement</subject><ispartof>2012 35th International Conference on Telecommunications and Signal Processing (TSP), 2012, p.615-620</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6256370$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6256370$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Takahashi, K.</creatorcontrib><creatorcontrib>Namikawa, S.</creatorcontrib><creatorcontrib>Hashimoto, M.</creatorcontrib><title>Computational emotion recognition using multimodal physiological signals: Elicited using Japanese kanji words</title><title>2012 35th International Conference on Telecommunications and Signal Processing (TSP)</title><addtitle>TSP</addtitle><description>This paper investigates computational emotion recognition using multimodal physiological signals. Four physiological signs - plethysmogram, skin conductance change, respiration rate and skin temperature - are measured to evaluate three emotions: positive, negative and neutral. Psychophysical experiments are conducted using Japanese kanji words in order to excite emotions in subjects so as to elicit physiological signals. For computational emotion recognition, machine-learning approaches, such as multilayer neural networks, support vector machines, decision trees and random forests, are used to design emotion recognition systems and their characteristics are investigated. In computational experiments conducted for recognising emotions, support vector machines equipped with a Gaussian kernel function attain a maximum averaged recognition rate of around 40% for all three emotions and around 56% for two emotions (positive and negative). The results obtained in this study shows that using multimodal physiological signals with a machine-learning approach is feasible and suited for computational emotion recognition.</description><subject>Emotion</subject><subject>Emotion recognition</subject><subject>Humans</subject><subject>Kanji words</subject><subject>Kernel</subject><subject>Machine learning</subject><subject>Physiological signal</subject><subject>Physiology</subject><subject>Sensors</subject><subject>Skin</subject><subject>Temperature measurement</subject><isbn>9781467311175</isbn><isbn>1467311170</isbn><isbn>1467311162</isbn><isbn>9781467311168</isbn><isbn>9781467311182</isbn><isbn>1467311189</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1UMFOwzAMDUJIwOgdiUt_oCVJ2zTlhqoxQJNAYpynLHGKR9tUTSu0vyfA8MXv2e9Ztgm5ZjRljFa3m7fXlFPGU8ELkZX0hFyyXJQZY0zwUxJVpfznZXFOIu_3NESoclFckK523TBPakLXqzaGzv2geATtmh5_8eyxb-JubifsnAmi4ePg0bWuQR2YxyY4_V28bFHjBOZoeFaD6sFD_Kn6PcZfbjT-ipzZoIXomBfk_WG5qR-T9cvqqb5fJxiWnBKblcaIwopCaq0NcKroDipVSi2UlMArE3pWaw46nGwN07mstOG7XDJl82xBbv7mIgBshxE7NR62xw9l3-ztXZ0</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Takahashi, K.</creator><creator>Namikawa, S.</creator><creator>Hashimoto, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201207</creationdate><title>Computational emotion recognition using multimodal physiological signals: Elicited using Japanese kanji words</title><author>Takahashi, K. ; Namikawa, S. ; Hashimoto, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f37dd65f658cccde20a0be9a78c6a88e29df65fcc2ec370fd1c489cd2b481af43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Emotion</topic><topic>Emotion recognition</topic><topic>Humans</topic><topic>Kanji words</topic><topic>Kernel</topic><topic>Machine learning</topic><topic>Physiological signal</topic><topic>Physiology</topic><topic>Sensors</topic><topic>Skin</topic><topic>Temperature measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Takahashi, K.</creatorcontrib><creatorcontrib>Namikawa, S.</creatorcontrib><creatorcontrib>Hashimoto, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Takahashi, K.</au><au>Namikawa, S.</au><au>Hashimoto, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Computational emotion recognition using multimodal physiological signals: Elicited using Japanese kanji words</atitle><btitle>2012 35th International Conference on Telecommunications and Signal Processing (TSP)</btitle><stitle>TSP</stitle><date>2012-07</date><risdate>2012</risdate><spage>615</spage><epage>620</epage><pages>615-620</pages><isbn>9781467311175</isbn><isbn>1467311170</isbn><eisbn>1467311162</eisbn><eisbn>9781467311168</eisbn><eisbn>9781467311182</eisbn><eisbn>1467311189</eisbn><abstract>This paper investigates computational emotion recognition using multimodal physiological signals. Four physiological signs - plethysmogram, skin conductance change, respiration rate and skin temperature - are measured to evaluate three emotions: positive, negative and neutral. Psychophysical experiments are conducted using Japanese kanji words in order to excite emotions in subjects so as to elicit physiological signals. For computational emotion recognition, machine-learning approaches, such as multilayer neural networks, support vector machines, decision trees and random forests, are used to design emotion recognition systems and their characteristics are investigated. In computational experiments conducted for recognising emotions, support vector machines equipped with a Gaussian kernel function attain a maximum averaged recognition rate of around 40% for all three emotions and around 56% for two emotions (positive and negative). The results obtained in this study shows that using multimodal physiological signals with a machine-learning approach is feasible and suited for computational emotion recognition.</abstract><pub>IEEE</pub><doi>10.1109/TSP.2012.6256370</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467311175
ispartof 2012 35th International Conference on Telecommunications and Signal Processing (TSP), 2012, p.615-620
issn
language eng
recordid cdi_ieee_primary_6256370
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Emotion
Emotion recognition
Humans
Kanji words
Kernel
Machine learning
Physiological signal
Physiology
Sensors
Skin
Temperature measurement
title Computational emotion recognition using multimodal physiological signals: Elicited using Japanese kanji words
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A23%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Computational%20emotion%20recognition%20using%20multimodal%20physiological%20signals:%20Elicited%20using%20Japanese%20kanji%20words&rft.btitle=2012%2035th%20International%20Conference%20on%20Telecommunications%20and%20Signal%20Processing%20(TSP)&rft.au=Takahashi,%20K.&rft.date=2012-07&rft.spage=615&rft.epage=620&rft.pages=615-620&rft.isbn=9781467311175&rft.isbn_list=1467311170&rft_id=info:doi/10.1109/TSP.2012.6256370&rft.eisbn=1467311162&rft.eisbn_list=9781467311168&rft.eisbn_list=9781467311182&rft.eisbn_list=1467311189&rft_dat=%3Cieee_6IE%3E6256370%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-f37dd65f658cccde20a0be9a78c6a88e29df65fcc2ec370fd1c489cd2b481af43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6256370&rfr_iscdi=true