Loading…

Mitigation of Bandwidth Limitation in Wireless Doherty Amplifiers With Substantial Bandwidth Enhancement Using Digital Techniques

This paper proposes a new method for extending the bandwidth of Doherty power amplifiers (PAs) in the digital domain. The bandwidth enhancement is achieved through a frequency-selective pre-compensation mechanism that is derived to prevent the efficiency degradation that naturally occurs as the freq...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on microwave theory and techniques 2012-09, Vol.60 (9), p.2875-2885
Main Authors: Darraji, R., Ghannouchi, F. M., Helaoui, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper proposes a new method for extending the bandwidth of Doherty power amplifiers (PAs) in the digital domain. The bandwidth enhancement is achieved through a frequency-selective pre-compensation mechanism that is derived to prevent the efficiency degradation that naturally occurs as the frequency of operation deviates from the center frequency. A methodical analysis of the frequency response of the conventional Doherty PA and that of the proposed Doherty PA is carried out to point out the limitations of the former and demonstrate the capability of the latter in recovering the bandwidth. Over the frequency range spanning from 1.96 to 2.46 GHz, the measured drain efficiency at 6-7-dB output power back-off is higher than 40% for the proposed Doherty PA. Such efficiency performance is achievable only from 2.04 to 2.22 GHz using the conventional Doherty PA. Hence, the bandwidth is enhanced from 180 to 500 MHz, which corresponds to an increase by a factor of 2.8 (i.e., almost triple). By applying the proposed methodology, a Doherty PA that is originally designed at the center frequency of 2.14 GHz for downlink wideband code division multiple access became operative at 1.98-GHz uplink wideband code division multiple access (UL-WCDMA), 2.22-GHz long-term evolution (LTE), and 2.34-GHz worldwide interoperability for microwave access (WiMAX) bands. The average drain efficiencies for UL-WCDMA, LTE, and WiMAX applications, were 40.1%, 44.2%, and 41.4%, respectively, using the proposed Doherty PA, and 37%, 37.3%, and 35.2%, respectively, using the conventional Doherty PA.
ISSN:0018-9480
1557-9670
DOI:10.1109/TMTT.2012.2207910