Loading…

Contribution of the Methodologies Development for the Analysis of Remote Sensing Data

In this paper, we consider the problem of Blind source separation (BSS) method by taking advantage of the sparse modeling of the hyperspectral images. These images are produced by sensors which provide hundreds of narrow and adjacent spectral bands. The idea behind transform domains is to apply some...

Full description

Saved in:
Bibliographic Details
Main Authors: Karray, E., Loghmari, M. A., Elmannai, H., Naceur, M. S.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Karray, E.
Loghmari, M. A.
Elmannai, H.
Naceur, M. S.
description In this paper, we consider the problem of Blind source separation (BSS) method by taking advantage of the sparse modeling of the hyperspectral images. These images are produced by sensors which provide hundreds of narrow and adjacent spectral bands. The idea behind transform domains is to apply some transformations to illustrate the dataset with a minimum of components and a maximum of essential information. To take advantages from the new representation of hyperspectral data, a novel classification approach based on using Binary Partition Trees (BPT). The BPT is obtained by iteratively merging regions and provided a combined and hierarchical representation of the image in a tree structure of regions.
doi_str_mv 10.1109/RSETE.2012.6260520
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6260520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6260520</ieee_id><sourcerecordid>6260520</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-60a5af7442df4a9d0a77125151872cc23162c875cd327b632554168b5c9165ad3</originalsourceid><addsrcrecordid>eNo1UM1Kw0AYXBFBrXkBvewLJO5-2Z_kWNJahYrQxnPZJF_alSRbsqvQtzdqncswMDMMQ8g9ZwnnLH_cbJflMgHGIVGgmAR2QaJcZ1wonbJMi-yS3P4LgGsSef_BJkwWEPKGvBduCKOtPoN1A3UtDQekrxgOrnGd21v0dIFf2Lljj0OgrRt_HfPBdCdv_U9ig70LSLc4eDvs6cIEc0euWtN5jM48I-XTsiye4_Xb6qWYr2ObsxArZqRptRDQtMLkDTNac5Bc8mlrXUPKFdSZlnWTgq5UClIKrrJK1jlX0jTpjDz81VpE3B1H25vxtDsfkX4DHgBQ9w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Contribution of the Methodologies Development for the Analysis of Remote Sensing Data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Karray, E. ; Loghmari, M. A. ; Elmannai, H. ; Naceur, M. S.</creator><creatorcontrib>Karray, E. ; Loghmari, M. A. ; Elmannai, H. ; Naceur, M. S.</creatorcontrib><description>In this paper, we consider the problem of Blind source separation (BSS) method by taking advantage of the sparse modeling of the hyperspectral images. These images are produced by sensors which provide hundreds of narrow and adjacent spectral bands. The idea behind transform domains is to apply some transformations to illustrate the dataset with a minimum of components and a maximum of essential information. To take advantages from the new representation of hyperspectral data, a novel classification approach based on using Binary Partition Trees (BPT). The BPT is obtained by iteratively merging regions and provided a combined and hierarchical representation of the image in a tree structure of regions.</description><identifier>ISBN: 1467308722</identifier><identifier>ISBN: 9781467308724</identifier><identifier>EISBN: 9781467308748</identifier><identifier>EISBN: 1467308757</identifier><identifier>EISBN: 1467308749</identifier><identifier>EISBN: 9781467308755</identifier><identifier>DOI: 10.1109/RSETE.2012.6260520</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data mining ; Discrete cosine transforms ; Frequency domain analysis ; Hyperspectral imaging ; Merging ; Source separation</subject><ispartof>2012 2nd International Conference on Remote Sensing, Environment and Transportation Engineering, 2012, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6260520$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6260520$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Karray, E.</creatorcontrib><creatorcontrib>Loghmari, M. A.</creatorcontrib><creatorcontrib>Elmannai, H.</creatorcontrib><creatorcontrib>Naceur, M. S.</creatorcontrib><title>Contribution of the Methodologies Development for the Analysis of Remote Sensing Data</title><title>2012 2nd International Conference on Remote Sensing, Environment and Transportation Engineering</title><addtitle>RSETE</addtitle><description>In this paper, we consider the problem of Blind source separation (BSS) method by taking advantage of the sparse modeling of the hyperspectral images. These images are produced by sensors which provide hundreds of narrow and adjacent spectral bands. The idea behind transform domains is to apply some transformations to illustrate the dataset with a minimum of components and a maximum of essential information. To take advantages from the new representation of hyperspectral data, a novel classification approach based on using Binary Partition Trees (BPT). The BPT is obtained by iteratively merging regions and provided a combined and hierarchical representation of the image in a tree structure of regions.</description><subject>Data mining</subject><subject>Discrete cosine transforms</subject><subject>Frequency domain analysis</subject><subject>Hyperspectral imaging</subject><subject>Merging</subject><subject>Source separation</subject><isbn>1467308722</isbn><isbn>9781467308724</isbn><isbn>9781467308748</isbn><isbn>1467308757</isbn><isbn>1467308749</isbn><isbn>9781467308755</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1UM1Kw0AYXBFBrXkBvewLJO5-2Z_kWNJahYrQxnPZJF_alSRbsqvQtzdqncswMDMMQ8g9ZwnnLH_cbJflMgHGIVGgmAR2QaJcZ1wonbJMi-yS3P4LgGsSef_BJkwWEPKGvBduCKOtPoN1A3UtDQekrxgOrnGd21v0dIFf2Lljj0OgrRt_HfPBdCdv_U9ig70LSLc4eDvs6cIEc0euWtN5jM48I-XTsiye4_Xb6qWYr2ObsxArZqRptRDQtMLkDTNac5Bc8mlrXUPKFdSZlnWTgq5UClIKrrJK1jlX0jTpjDz81VpE3B1H25vxtDsfkX4DHgBQ9w</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Karray, E.</creator><creator>Loghmari, M. A.</creator><creator>Elmannai, H.</creator><creator>Naceur, M. S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201206</creationdate><title>Contribution of the Methodologies Development for the Analysis of Remote Sensing Data</title><author>Karray, E. ; Loghmari, M. A. ; Elmannai, H. ; Naceur, M. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-60a5af7442df4a9d0a77125151872cc23162c875cd327b632554168b5c9165ad3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Data mining</topic><topic>Discrete cosine transforms</topic><topic>Frequency domain analysis</topic><topic>Hyperspectral imaging</topic><topic>Merging</topic><topic>Source separation</topic><toplevel>online_resources</toplevel><creatorcontrib>Karray, E.</creatorcontrib><creatorcontrib>Loghmari, M. A.</creatorcontrib><creatorcontrib>Elmannai, H.</creatorcontrib><creatorcontrib>Naceur, M. S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Karray, E.</au><au>Loghmari, M. A.</au><au>Elmannai, H.</au><au>Naceur, M. S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Contribution of the Methodologies Development for the Analysis of Remote Sensing Data</atitle><btitle>2012 2nd International Conference on Remote Sensing, Environment and Transportation Engineering</btitle><stitle>RSETE</stitle><date>2012-06</date><risdate>2012</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><isbn>1467308722</isbn><isbn>9781467308724</isbn><eisbn>9781467308748</eisbn><eisbn>1467308757</eisbn><eisbn>1467308749</eisbn><eisbn>9781467308755</eisbn><abstract>In this paper, we consider the problem of Blind source separation (BSS) method by taking advantage of the sparse modeling of the hyperspectral images. These images are produced by sensors which provide hundreds of narrow and adjacent spectral bands. The idea behind transform domains is to apply some transformations to illustrate the dataset with a minimum of components and a maximum of essential information. To take advantages from the new representation of hyperspectral data, a novel classification approach based on using Binary Partition Trees (BPT). The BPT is obtained by iteratively merging regions and provided a combined and hierarchical representation of the image in a tree structure of regions.</abstract><pub>IEEE</pub><doi>10.1109/RSETE.2012.6260520</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467308722
ispartof 2012 2nd International Conference on Remote Sensing, Environment and Transportation Engineering, 2012, p.1-4
issn
language eng
recordid cdi_ieee_primary_6260520
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Data mining
Discrete cosine transforms
Frequency domain analysis
Hyperspectral imaging
Merging
Source separation
title Contribution of the Methodologies Development for the Analysis of Remote Sensing Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A44%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Contribution%20of%20the%20Methodologies%20Development%20for%20the%20Analysis%20of%20Remote%20Sensing%20Data&rft.btitle=2012%202nd%20International%20Conference%20on%20Remote%20Sensing,%20Environment%20and%20Transportation%20Engineering&rft.au=Karray,%20E.&rft.date=2012-06&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.isbn=1467308722&rft.isbn_list=9781467308724&rft_id=info:doi/10.1109/RSETE.2012.6260520&rft.eisbn=9781467308748&rft.eisbn_list=1467308757&rft.eisbn_list=1467308749&rft.eisbn_list=9781467308755&rft_dat=%3Cieee_6IE%3E6260520%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-60a5af7442df4a9d0a77125151872cc23162c875cd327b632554168b5c9165ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6260520&rfr_iscdi=true