Loading…

An Ant Colony Optimization Algorithm based on automatic dynamic updating

Currently, the general ant colony algorithm is disadvantage of solving continuous problem, such as the slow convergence and stagnation. To this end, we proposed an Ant Colony Optimization Algorithm which is capable of automatic dynamic updating the parameters. It chooses the ants through the fitness...

Full description

Saved in:
Bibliographic Details
Main Authors: Zuo Li-yun, Zuo Li-feng
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 116
container_issue
container_start_page 111
container_title
container_volume 1
creator Zuo Li-yun
Zuo Li-feng
description Currently, the general ant colony algorithm is disadvantage of solving continuous problem, such as the slow convergence and stagnation. To this end, we proposed an Ant Colony Optimization Algorithm which is capable of automatic dynamic updating the parameters. It chooses the ants through the fitness function (i.e., the objective function). Then, in accordance with the specific issue of the characteristics of the problem, algorithms parameters can be automatically adjusted to the optimum to make the entire optimization process. The concrete method is to transfer the discrete problem to continuous space problem through the transition probability in order to enhance the optimal path of the pheromone of ants, accelerate the convergence and avoid algorithm stagnation by controlling residual amount of pheromone. Simulation results show that the algorithm for solving the problem of continuous time domain can significantly improve the convergence speed and solution accuracy.
doi_str_mv 10.1109/CSAE.2012.6272560
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6272560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6272560</ieee_id><sourcerecordid>6272560</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-eb8696f80dc3b878301cc5019bce45574ca578fe8ae45691c012bd9be6f338593</originalsourceid><addsrcrecordid>eNo1j8FKxDAQhiMiqGsfQLzkBVqTpkkmx1JWV1jYg3tfkjRdI21T2uyhPr0B17n8fN8MAz9Cz5QUlBL12nzW26IktCxEKUsuyA3KlARaCckIASVu0eM_ANyjbFm-SZp0ksQD2tUjrseIm9CHccWHKfrB_-joQ_L9Ocw-fg3Y6MW1OCl9iWFIW4vbddRDysvUJh7PT-iu0_3ismtu0PFte2x2-f7w_tHU-9wrEnNnQCjRAWktMyCBEWotJ1QZ6yrOZWU1l9A50AmFojY1M60yTnSMAVdsg17-3nrn3Gma_aDn9XTtzn4BJYlM-A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An Ant Colony Optimization Algorithm based on automatic dynamic updating</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zuo Li-yun ; Zuo Li-feng</creator><creatorcontrib>Zuo Li-yun ; Zuo Li-feng</creatorcontrib><description>Currently, the general ant colony algorithm is disadvantage of solving continuous problem, such as the slow convergence and stagnation. To this end, we proposed an Ant Colony Optimization Algorithm which is capable of automatic dynamic updating the parameters. It chooses the ants through the fitness function (i.e., the objective function). Then, in accordance with the specific issue of the characteristics of the problem, algorithms parameters can be automatically adjusted to the optimum to make the entire optimization process. The concrete method is to transfer the discrete problem to continuous space problem through the transition probability in order to enhance the optimal path of the pheromone of ants, accelerate the convergence and avoid algorithm stagnation by controlling residual amount of pheromone. Simulation results show that the algorithm for solving the problem of continuous time domain can significantly improve the convergence speed and solution accuracy.</description><identifier>ISBN: 1467300888</identifier><identifier>ISBN: 9781467300889</identifier><identifier>EISBN: 9781467300896</identifier><identifier>EISBN: 1467300896</identifier><identifier>EISBN: 9781467300872</identifier><identifier>EISBN: 146730087X</identifier><identifier>DOI: 10.1109/CSAE.2012.6272560</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Aerospace electronics ; Algorithm design and analysis ; Convergence ; Heuristic algorithms ; Optimization ; pheromone ; solution accuracy ; transition probability ; Vectors</subject><ispartof>2012 IEEE International Conference on Computer Science and Automation Engineering (CSAE), 2012, Vol.1, p.111-116</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6272560$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27914,54909</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6272560$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zuo Li-yun</creatorcontrib><creatorcontrib>Zuo Li-feng</creatorcontrib><title>An Ant Colony Optimization Algorithm based on automatic dynamic updating</title><title>2012 IEEE International Conference on Computer Science and Automation Engineering (CSAE)</title><addtitle>CSAE</addtitle><description>Currently, the general ant colony algorithm is disadvantage of solving continuous problem, such as the slow convergence and stagnation. To this end, we proposed an Ant Colony Optimization Algorithm which is capable of automatic dynamic updating the parameters. It chooses the ants through the fitness function (i.e., the objective function). Then, in accordance with the specific issue of the characteristics of the problem, algorithms parameters can be automatically adjusted to the optimum to make the entire optimization process. The concrete method is to transfer the discrete problem to continuous space problem through the transition probability in order to enhance the optimal path of the pheromone of ants, accelerate the convergence and avoid algorithm stagnation by controlling residual amount of pheromone. Simulation results show that the algorithm for solving the problem of continuous time domain can significantly improve the convergence speed and solution accuracy.</description><subject>Accuracy</subject><subject>Aerospace electronics</subject><subject>Algorithm design and analysis</subject><subject>Convergence</subject><subject>Heuristic algorithms</subject><subject>Optimization</subject><subject>pheromone</subject><subject>solution accuracy</subject><subject>transition probability</subject><subject>Vectors</subject><isbn>1467300888</isbn><isbn>9781467300889</isbn><isbn>9781467300896</isbn><isbn>1467300896</isbn><isbn>9781467300872</isbn><isbn>146730087X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j8FKxDAQhiMiqGsfQLzkBVqTpkkmx1JWV1jYg3tfkjRdI21T2uyhPr0B17n8fN8MAz9Cz5QUlBL12nzW26IktCxEKUsuyA3KlARaCckIASVu0eM_ANyjbFm-SZp0ksQD2tUjrseIm9CHccWHKfrB_-joQ_L9Ocw-fg3Y6MW1OCl9iWFIW4vbddRDysvUJh7PT-iu0_3ismtu0PFte2x2-f7w_tHU-9wrEnNnQCjRAWktMyCBEWotJ1QZ6yrOZWU1l9A50AmFojY1M60yTnSMAVdsg17-3nrn3Gma_aDn9XTtzn4BJYlM-A</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Zuo Li-yun</creator><creator>Zuo Li-feng</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201205</creationdate><title>An Ant Colony Optimization Algorithm based on automatic dynamic updating</title><author>Zuo Li-yun ; Zuo Li-feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-eb8696f80dc3b878301cc5019bce45574ca578fe8ae45691c012bd9be6f338593</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Aerospace electronics</topic><topic>Algorithm design and analysis</topic><topic>Convergence</topic><topic>Heuristic algorithms</topic><topic>Optimization</topic><topic>pheromone</topic><topic>solution accuracy</topic><topic>transition probability</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Zuo Li-yun</creatorcontrib><creatorcontrib>Zuo Li-feng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zuo Li-yun</au><au>Zuo Li-feng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An Ant Colony Optimization Algorithm based on automatic dynamic updating</atitle><btitle>2012 IEEE International Conference on Computer Science and Automation Engineering (CSAE)</btitle><stitle>CSAE</stitle><date>2012-05</date><risdate>2012</risdate><volume>1</volume><spage>111</spage><epage>116</epage><pages>111-116</pages><isbn>1467300888</isbn><isbn>9781467300889</isbn><eisbn>9781467300896</eisbn><eisbn>1467300896</eisbn><eisbn>9781467300872</eisbn><eisbn>146730087X</eisbn><abstract>Currently, the general ant colony algorithm is disadvantage of solving continuous problem, such as the slow convergence and stagnation. To this end, we proposed an Ant Colony Optimization Algorithm which is capable of automatic dynamic updating the parameters. It chooses the ants through the fitness function (i.e., the objective function). Then, in accordance with the specific issue of the characteristics of the problem, algorithms parameters can be automatically adjusted to the optimum to make the entire optimization process. The concrete method is to transfer the discrete problem to continuous space problem through the transition probability in order to enhance the optimal path of the pheromone of ants, accelerate the convergence and avoid algorithm stagnation by controlling residual amount of pheromone. Simulation results show that the algorithm for solving the problem of continuous time domain can significantly improve the convergence speed and solution accuracy.</abstract><pub>IEEE</pub><doi>10.1109/CSAE.2012.6272560</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467300888
ispartof 2012 IEEE International Conference on Computer Science and Automation Engineering (CSAE), 2012, Vol.1, p.111-116
issn
language eng
recordid cdi_ieee_primary_6272560
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Aerospace electronics
Algorithm design and analysis
Convergence
Heuristic algorithms
Optimization
pheromone
solution accuracy
transition probability
Vectors
title An Ant Colony Optimization Algorithm based on automatic dynamic updating
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A21%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20Ant%20Colony%20Optimization%20Algorithm%20based%20on%20automatic%20dynamic%20updating&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Computer%20Science%20and%20Automation%20Engineering%20(CSAE)&rft.au=Zuo%20Li-yun&rft.date=2012-05&rft.volume=1&rft.spage=111&rft.epage=116&rft.pages=111-116&rft.isbn=1467300888&rft.isbn_list=9781467300889&rft_id=info:doi/10.1109/CSAE.2012.6272560&rft.eisbn=9781467300896&rft.eisbn_list=1467300896&rft.eisbn_list=9781467300872&rft.eisbn_list=146730087X&rft_dat=%3Cieee_6IE%3E6272560%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-eb8696f80dc3b878301cc5019bce45574ca578fe8ae45691c012bd9be6f338593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6272560&rfr_iscdi=true