Loading…

Cooperation Achieves Optimal Multicast Capacity-Delay Scaling in MANET

In this paper, we focus on capacity-delay tradeoffs for multicast traffic pattern. Under the assumption that n nodes move in a unit square according to an i.i.d. mobility model, with each serving as a source that sends identical packets to k destinations, we propose four schemes of which the achieva...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on communications 2012-10, Vol.60 (10), p.3023-3031
Main Authors: Wang, Xinbing, Peng, Qiuyu, Li, Yingzhe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we focus on capacity-delay tradeoffs for multicast traffic pattern. Under the assumption that n nodes move in a unit square according to an i.i.d. mobility model, with each serving as a source that sends identical packets to k destinations, we propose four schemes of which the achievable capacity λ and delay D are analyzed: (1) 2-hop noncooperative non-redundancy scheme, (2) 2-hop noncooperative redundancy scheme, (3) 2-hop cooperative non-redundancy scheme, (4) 2-hop cooperative redundancy scheme. Compared with non-cooperative scheme with capacity delay tradeoff λ = O( E[D]/nk log k) first developed in [5], cooperation among destination nodes achieves optimal capacity delay tradeoff λ = O(E[D]/n log k) in cell partitioned network. With intelligent cooperation, each destination acts equivalently as relay and helps other destinations get more opportunities of receiving packets with capacity sacrificed to a addition, our redundancy schemes also allow delay under Θ(√n) log k factor compared with unicast in [3] under the same delay. In achievable, which is the minimum delay under the schemes of [3],[5].
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2012.081512.110535