Loading…

Real Coded Genetic Algorithm based dynamic Congestion Management in open power markets

The first real time task of ISO focuses on Static Congestion Management (SCM), i.e. the congestion caused by the thermal and voltage limits. When power systems undergoes discrete changes in system configuration due to outage and contingencies, the system dynamic performance will be affected and the...

Full description

Saved in:
Bibliographic Details
Main Authors: Muneender, E., Vinodkumar, D. M.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Muneender, E.
Vinodkumar, D. M.
description The first real time task of ISO focuses on Static Congestion Management (SCM), i.e. the congestion caused by the thermal and voltage limits. When power systems undergoes discrete changes in system configuration due to outage and contingencies, the system dynamic performance will be affected and the system stability might be threatened. In this respect, the second real time task of ISO focuses on the utilization of available resources to maintain system security and reliability. This process is called Dynamic Congestion Management (DCM). The DCM refers to the process that secures stability of the post fault power system in an economic manner. The objective function of the DCM model used in this paper has been formulated as a constrained nonlinear optimization problem. This proposes the application of Real Coded Genetic Algorithm (RCGA) for solving the constrained nonlinear DCM model to assess the generation re-scheduling for minimizing the objective function. In the proposed RCGA method, owing to the adaptive capability, Simulated Binary Crossover (SBX) and Tournament selection is used as selection mechanism in order to avoid premature convergence. To establish the linear inequality of transmission limit constraints and transient stability constraints, generator shift factor and trajectory sensitivities are calculated. The algorithm's performance has been examined over 3-machine, 9-bus WSCC system.
doi_str_mv 10.1109/TDC.2012.6281631
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6281631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6281631</ieee_id><sourcerecordid>6281631</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-11e9965a840064a1ac840fa0a0f9a3dbf4bf80fd5b8f8b3b0ba5a3e1038b62093</originalsourceid><addsrcrecordid>eNpFUE1Lw0AUXL_AWnsXvOwfSH0vm91sjiVqFSqCVPFW3jZv62qzKUlA-u8NWHQuM8zADIwQVwhTRChulrflNAVMpya1aBQeiQvMTK6wUPr9WIxSNJBYbdTJf5Dh6V-g9bmYdN0nDMgtpsaOxNsL01aWTcWVnHPkPqzlbLtp2tB_1NJRN_jVPlI9-GUTN9z1oYnyiSJtuObYyxBls-Mod803t7Km9ov77lKcedp2PDnwWLze3y3Lh2TxPH8sZ4skYK77BJGLwmiyGYDJCGk9KE9A4AtSlfOZ8xZ8pZ311ikHjjQpRlDWmRQKNRbXv72BmVe7Ngz7-9XhH_UD5OJVSQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Real Coded Genetic Algorithm based dynamic Congestion Management in open power markets</title><source>IEEE Xplore All Conference Series</source><creator>Muneender, E. ; Vinodkumar, D. M.</creator><creatorcontrib>Muneender, E. ; Vinodkumar, D. M.</creatorcontrib><description>The first real time task of ISO focuses on Static Congestion Management (SCM), i.e. the congestion caused by the thermal and voltage limits. When power systems undergoes discrete changes in system configuration due to outage and contingencies, the system dynamic performance will be affected and the system stability might be threatened. In this respect, the second real time task of ISO focuses on the utilization of available resources to maintain system security and reliability. This process is called Dynamic Congestion Management (DCM). The DCM refers to the process that secures stability of the post fault power system in an economic manner. The objective function of the DCM model used in this paper has been formulated as a constrained nonlinear optimization problem. This proposes the application of Real Coded Genetic Algorithm (RCGA) for solving the constrained nonlinear DCM model to assess the generation re-scheduling for minimizing the objective function. In the proposed RCGA method, owing to the adaptive capability, Simulated Binary Crossover (SBX) and Tournament selection is used as selection mechanism in order to avoid premature convergence. To establish the linear inequality of transmission limit constraints and transient stability constraints, generator shift factor and trajectory sensitivities are calculated. The algorithm's performance has been examined over 3-machine, 9-bus WSCC system.</description><identifier>ISSN: 2160-8555</identifier><identifier>ISBN: 1467319341</identifier><identifier>ISBN: 9781467319348</identifier><identifier>EISSN: 2160-8563</identifier><identifier>EISBN: 146731935X</identifier><identifier>EISBN: 9781467319331</identifier><identifier>EISBN: 1467319333</identifier><identifier>EISBN: 9781467319355</identifier><identifier>DOI: 10.1109/TDC.2012.6281631</identifier><language>eng</language><publisher>IEEE</publisher><subject>Dynamic Congestion Management ; generator shift factor ; Generators ; Genetic algorithms ; Mathematical model ; Power system dynamics ; Power system stability ; Stability analysis ; Trajectory Sensitivity Assessment ; Transient analysis</subject><ispartof>PES T&amp;D 2012, 2012, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6281631$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54554,54919,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6281631$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Muneender, E.</creatorcontrib><creatorcontrib>Vinodkumar, D. M.</creatorcontrib><title>Real Coded Genetic Algorithm based dynamic Congestion Management in open power markets</title><title>PES T&amp;D 2012</title><addtitle>TDC</addtitle><description>The first real time task of ISO focuses on Static Congestion Management (SCM), i.e. the congestion caused by the thermal and voltage limits. When power systems undergoes discrete changes in system configuration due to outage and contingencies, the system dynamic performance will be affected and the system stability might be threatened. In this respect, the second real time task of ISO focuses on the utilization of available resources to maintain system security and reliability. This process is called Dynamic Congestion Management (DCM). The DCM refers to the process that secures stability of the post fault power system in an economic manner. The objective function of the DCM model used in this paper has been formulated as a constrained nonlinear optimization problem. This proposes the application of Real Coded Genetic Algorithm (RCGA) for solving the constrained nonlinear DCM model to assess the generation re-scheduling for minimizing the objective function. In the proposed RCGA method, owing to the adaptive capability, Simulated Binary Crossover (SBX) and Tournament selection is used as selection mechanism in order to avoid premature convergence. To establish the linear inequality of transmission limit constraints and transient stability constraints, generator shift factor and trajectory sensitivities are calculated. The algorithm's performance has been examined over 3-machine, 9-bus WSCC system.</description><subject>Dynamic Congestion Management</subject><subject>generator shift factor</subject><subject>Generators</subject><subject>Genetic algorithms</subject><subject>Mathematical model</subject><subject>Power system dynamics</subject><subject>Power system stability</subject><subject>Stability analysis</subject><subject>Trajectory Sensitivity Assessment</subject><subject>Transient analysis</subject><issn>2160-8555</issn><issn>2160-8563</issn><isbn>1467319341</isbn><isbn>9781467319348</isbn><isbn>146731935X</isbn><isbn>9781467319331</isbn><isbn>1467319333</isbn><isbn>9781467319355</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFUE1Lw0AUXL_AWnsXvOwfSH0vm91sjiVqFSqCVPFW3jZv62qzKUlA-u8NWHQuM8zADIwQVwhTRChulrflNAVMpya1aBQeiQvMTK6wUPr9WIxSNJBYbdTJf5Dh6V-g9bmYdN0nDMgtpsaOxNsL01aWTcWVnHPkPqzlbLtp2tB_1NJRN_jVPlI9-GUTN9z1oYnyiSJtuObYyxBls-Mod803t7Km9ov77lKcedp2PDnwWLze3y3Lh2TxPH8sZ4skYK77BJGLwmiyGYDJCGk9KE9A4AtSlfOZ8xZ8pZ311ikHjjQpRlDWmRQKNRbXv72BmVe7Ngz7-9XhH_UD5OJVSQ</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Muneender, E.</creator><creator>Vinodkumar, D. M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201205</creationdate><title>Real Coded Genetic Algorithm based dynamic Congestion Management in open power markets</title><author>Muneender, E. ; Vinodkumar, D. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-11e9965a840064a1ac840fa0a0f9a3dbf4bf80fd5b8f8b3b0ba5a3e1038b62093</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Dynamic Congestion Management</topic><topic>generator shift factor</topic><topic>Generators</topic><topic>Genetic algorithms</topic><topic>Mathematical model</topic><topic>Power system dynamics</topic><topic>Power system stability</topic><topic>Stability analysis</topic><topic>Trajectory Sensitivity Assessment</topic><topic>Transient analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Muneender, E.</creatorcontrib><creatorcontrib>Vinodkumar, D. M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Muneender, E.</au><au>Vinodkumar, D. M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Real Coded Genetic Algorithm based dynamic Congestion Management in open power markets</atitle><btitle>PES T&amp;D 2012</btitle><stitle>TDC</stitle><date>2012-05</date><risdate>2012</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>2160-8555</issn><eissn>2160-8563</eissn><isbn>1467319341</isbn><isbn>9781467319348</isbn><eisbn>146731935X</eisbn><eisbn>9781467319331</eisbn><eisbn>1467319333</eisbn><eisbn>9781467319355</eisbn><abstract>The first real time task of ISO focuses on Static Congestion Management (SCM), i.e. the congestion caused by the thermal and voltage limits. When power systems undergoes discrete changes in system configuration due to outage and contingencies, the system dynamic performance will be affected and the system stability might be threatened. In this respect, the second real time task of ISO focuses on the utilization of available resources to maintain system security and reliability. This process is called Dynamic Congestion Management (DCM). The DCM refers to the process that secures stability of the post fault power system in an economic manner. The objective function of the DCM model used in this paper has been formulated as a constrained nonlinear optimization problem. This proposes the application of Real Coded Genetic Algorithm (RCGA) for solving the constrained nonlinear DCM model to assess the generation re-scheduling for minimizing the objective function. In the proposed RCGA method, owing to the adaptive capability, Simulated Binary Crossover (SBX) and Tournament selection is used as selection mechanism in order to avoid premature convergence. To establish the linear inequality of transmission limit constraints and transient stability constraints, generator shift factor and trajectory sensitivities are calculated. The algorithm's performance has been examined over 3-machine, 9-bus WSCC system.</abstract><pub>IEEE</pub><doi>10.1109/TDC.2012.6281631</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2160-8555
ispartof PES T&D 2012, 2012, p.1-5
issn 2160-8555
2160-8563
language eng
recordid cdi_ieee_primary_6281631
source IEEE Xplore All Conference Series
subjects Dynamic Congestion Management
generator shift factor
Generators
Genetic algorithms
Mathematical model
Power system dynamics
Power system stability
Stability analysis
Trajectory Sensitivity Assessment
Transient analysis
title Real Coded Genetic Algorithm based dynamic Congestion Management in open power markets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Real%20Coded%20Genetic%20Algorithm%20based%20dynamic%20Congestion%20Management%20in%20open%20power%20markets&rft.btitle=PES%20T&D%202012&rft.au=Muneender,%20E.&rft.date=2012-05&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=2160-8555&rft.eissn=2160-8563&rft.isbn=1467319341&rft.isbn_list=9781467319348&rft_id=info:doi/10.1109/TDC.2012.6281631&rft.eisbn=146731935X&rft.eisbn_list=9781467319331&rft.eisbn_list=1467319333&rft.eisbn_list=9781467319355&rft_dat=%3Cieee_CHZPO%3E6281631%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-11e9965a840064a1ac840fa0a0f9a3dbf4bf80fd5b8f8b3b0ba5a3e1038b62093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6281631&rfr_iscdi=true