Loading…
Translating natural language utterances to search queries for SLU domain detection using query click logs
Logs of user queries from a search engine (such as Bing or Google) together with the links clicked provide valuable implicit feedback to improve statistical spoken language understanding (SLU) models. However, the form of natural language utterances occurring in spoken interactions with a computer d...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4956 |
container_issue | |
container_start_page | 4953 |
container_title | |
container_volume | |
creator | Hakkani-Tur, D. Tur, G. Iyer, R. Heck, L. |
description | Logs of user queries from a search engine (such as Bing or Google) together with the links clicked provide valuable implicit feedback to improve statistical spoken language understanding (SLU) models. However, the form of natural language utterances occurring in spoken interactions with a computer differs stylistically from that of keyword search queries. In this paper, we propose a machine translation approach to learn a mapping from natural language utterances to search queries. We train statistical translation models, using task and domain independent semantically equivalent natural language and keyword search query pairs mined from the search query click logs. We then extend our previous work on enriching the existing classification feature sets for input utterance domain detection with features computed using the click distribution over a set of clicked URLs from search engine query click logs of user utterances with automatically translated queries. This approach results in significant improvements for domain detection, especially when detecting the domains of user utterances that are formulated as natural language queries and effectively complements to the earlier work using syntactic transformations. |
doi_str_mv | 10.1109/ICASSP.2012.6289031 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6289031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6289031</ieee_id><sourcerecordid>6289031</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1aec169e5a4001f907be09c1e4fabe0c9619f03c9c1b0d6fbb7695e74c7efdc93</originalsourceid><addsrcrecordid>eNo1UMtOwzAQNC-JUPoFvfgHUnYTx66PqOIlVQKprcStcpx1MKQJxM6hf08qyl5mNbM70gxjM4Q5Iui7l-X9ev02zwCzucwWGnI8Y1OtFiikygGE1OcsyXKlU9TwfsFu_oVCXLIEiwxSiUJfs2kInzDO-Aq5TJjf9KYNjYm-rXlr4tCbhjemrQdTEx9ipFG3FHjseCDT2w_-M1DvR8Z1PV-vtrzq9sa3vKJINvqu5UM4mh3PDtw23n7xpqvDLbtypgk0PeGEbR8fNsvndPX6NOZbpR5VEVM0ZFFqKowAQKdBlQTaIglnxs1qidpBbkeqhEq6slRSF6SEVeQqq_MJm_35eiLaffd-b_rD7tRa_gtuXF9n</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Translating natural language utterances to search queries for SLU domain detection using query click logs</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hakkani-Tur, D. ; Tur, G. ; Iyer, R. ; Heck, L.</creator><creatorcontrib>Hakkani-Tur, D. ; Tur, G. ; Iyer, R. ; Heck, L.</creatorcontrib><description>Logs of user queries from a search engine (such as Bing or Google) together with the links clicked provide valuable implicit feedback to improve statistical spoken language understanding (SLU) models. However, the form of natural language utterances occurring in spoken interactions with a computer differs stylistically from that of keyword search queries. In this paper, we propose a machine translation approach to learn a mapping from natural language utterances to search queries. We train statistical translation models, using task and domain independent semantically equivalent natural language and keyword search query pairs mined from the search query click logs. We then extend our previous work on enriching the existing classification feature sets for input utterance domain detection with features computed using the click distribution over a set of clicked URLs from search engine query click logs of user utterances with automatically translated queries. This approach results in significant improvements for domain detection, especially when detecting the domains of user utterances that are formulated as natural language queries and effectively complements to the earlier work using syntactic transformations.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 1467300454</identifier><identifier>ISBN: 9781467300452</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781467300469</identifier><identifier>EISBN: 1467300446</identifier><identifier>EISBN: 9781467300445</identifier><identifier>EISBN: 1467300462</identifier><identifier>DOI: 10.1109/ICASSP.2012.6289031</identifier><language>eng</language><publisher>IEEE</publisher><subject>domain detection ; Error analysis ; Feature extraction ; Keyword search ; machine translation ; Natural languages ; Search engines ; search query click logs ; spoken language understanding ; Syntactics ; Web search</subject><ispartof>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, p.4953-4956</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6289031$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54534,54899,54911</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6289031$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hakkani-Tur, D.</creatorcontrib><creatorcontrib>Tur, G.</creatorcontrib><creatorcontrib>Iyer, R.</creatorcontrib><creatorcontrib>Heck, L.</creatorcontrib><title>Translating natural language utterances to search queries for SLU domain detection using query click logs</title><title>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>Logs of user queries from a search engine (such as Bing or Google) together with the links clicked provide valuable implicit feedback to improve statistical spoken language understanding (SLU) models. However, the form of natural language utterances occurring in spoken interactions with a computer differs stylistically from that of keyword search queries. In this paper, we propose a machine translation approach to learn a mapping from natural language utterances to search queries. We train statistical translation models, using task and domain independent semantically equivalent natural language and keyword search query pairs mined from the search query click logs. We then extend our previous work on enriching the existing classification feature sets for input utterance domain detection with features computed using the click distribution over a set of clicked URLs from search engine query click logs of user utterances with automatically translated queries. This approach results in significant improvements for domain detection, especially when detecting the domains of user utterances that are formulated as natural language queries and effectively complements to the earlier work using syntactic transformations.</description><subject>domain detection</subject><subject>Error analysis</subject><subject>Feature extraction</subject><subject>Keyword search</subject><subject>machine translation</subject><subject>Natural languages</subject><subject>Search engines</subject><subject>search query click logs</subject><subject>spoken language understanding</subject><subject>Syntactics</subject><subject>Web search</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>1467300454</isbn><isbn>9781467300452</isbn><isbn>9781467300469</isbn><isbn>1467300446</isbn><isbn>9781467300445</isbn><isbn>1467300462</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1UMtOwzAQNC-JUPoFvfgHUnYTx66PqOIlVQKprcStcpx1MKQJxM6hf08qyl5mNbM70gxjM4Q5Iui7l-X9ev02zwCzucwWGnI8Y1OtFiikygGE1OcsyXKlU9TwfsFu_oVCXLIEiwxSiUJfs2kInzDO-Aq5TJjf9KYNjYm-rXlr4tCbhjemrQdTEx9ipFG3FHjseCDT2w_-M1DvR8Z1PV-vtrzq9sa3vKJINvqu5UM4mh3PDtw23n7xpqvDLbtypgk0PeGEbR8fNsvndPX6NOZbpR5VEVM0ZFFqKowAQKdBlQTaIglnxs1qidpBbkeqhEq6slRSF6SEVeQqq_MJm_35eiLaffd-b_rD7tRa_gtuXF9n</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Hakkani-Tur, D.</creator><creator>Tur, G.</creator><creator>Iyer, R.</creator><creator>Heck, L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201203</creationdate><title>Translating natural language utterances to search queries for SLU domain detection using query click logs</title><author>Hakkani-Tur, D. ; Tur, G. ; Iyer, R. ; Heck, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1aec169e5a4001f907be09c1e4fabe0c9619f03c9c1b0d6fbb7695e74c7efdc93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>domain detection</topic><topic>Error analysis</topic><topic>Feature extraction</topic><topic>Keyword search</topic><topic>machine translation</topic><topic>Natural languages</topic><topic>Search engines</topic><topic>search query click logs</topic><topic>spoken language understanding</topic><topic>Syntactics</topic><topic>Web search</topic><toplevel>online_resources</toplevel><creatorcontrib>Hakkani-Tur, D.</creatorcontrib><creatorcontrib>Tur, G.</creatorcontrib><creatorcontrib>Iyer, R.</creatorcontrib><creatorcontrib>Heck, L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hakkani-Tur, D.</au><au>Tur, G.</au><au>Iyer, R.</au><au>Heck, L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Translating natural language utterances to search queries for SLU domain detection using query click logs</atitle><btitle>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2012-03</date><risdate>2012</risdate><spage>4953</spage><epage>4956</epage><pages>4953-4956</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>1467300454</isbn><isbn>9781467300452</isbn><eisbn>9781467300469</eisbn><eisbn>1467300446</eisbn><eisbn>9781467300445</eisbn><eisbn>1467300462</eisbn><abstract>Logs of user queries from a search engine (such as Bing or Google) together with the links clicked provide valuable implicit feedback to improve statistical spoken language understanding (SLU) models. However, the form of natural language utterances occurring in spoken interactions with a computer differs stylistically from that of keyword search queries. In this paper, we propose a machine translation approach to learn a mapping from natural language utterances to search queries. We train statistical translation models, using task and domain independent semantically equivalent natural language and keyword search query pairs mined from the search query click logs. We then extend our previous work on enriching the existing classification feature sets for input utterance domain detection with features computed using the click distribution over a set of clicked URLs from search engine query click logs of user utterances with automatically translated queries. This approach results in significant improvements for domain detection, especially when detecting the domains of user utterances that are formulated as natural language queries and effectively complements to the earlier work using syntactic transformations.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2012.6289031</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-6149 |
ispartof | 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, p.4953-4956 |
issn | 1520-6149 2379-190X |
language | eng |
recordid | cdi_ieee_primary_6289031 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | domain detection Error analysis Feature extraction Keyword search machine translation Natural languages Search engines search query click logs spoken language understanding Syntactics Web search |
title | Translating natural language utterances to search queries for SLU domain detection using query click logs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A09%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Translating%20natural%20language%20utterances%20to%20search%20queries%20for%20SLU%20domain%20detection%20using%20query%20click%20logs&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Hakkani-Tur,%20D.&rft.date=2012-03&rft.spage=4953&rft.epage=4956&rft.pages=4953-4956&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=1467300454&rft.isbn_list=9781467300452&rft_id=info:doi/10.1109/ICASSP.2012.6289031&rft.eisbn=9781467300469&rft.eisbn_list=1467300446&rft.eisbn_list=9781467300445&rft.eisbn_list=1467300462&rft_dat=%3Cieee_6IE%3E6289031%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-1aec169e5a4001f907be09c1e4fabe0c9619f03c9c1b0d6fbb7695e74c7efdc93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6289031&rfr_iscdi=true |