Loading…

Conditional leaving-one-out and cross-validation for discount estimation in Kneser-Ney-like extensions

The smoothing of n-gram models is a core technique in language modelling (LM). Modified Kneser-Ney (mKN) ranges among one of the best smoothing techniques. This technique discounts a fixed quantity from the observed counts in order to approximate the Turing-Good (TG) counts. Despite the TG counts op...

Full description

Saved in:
Bibliographic Details
Main Authors: Andres-Ferrer, J., Sundermeyer, M., Ney, H.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5016
container_issue
container_start_page 5013
container_title
container_volume
creator Andres-Ferrer, J.
Sundermeyer, M.
Ney, H.
description The smoothing of n-gram models is a core technique in language modelling (LM). Modified Kneser-Ney (mKN) ranges among one of the best smoothing techniques. This technique discounts a fixed quantity from the observed counts in order to approximate the Turing-Good (TG) counts. Despite the TG counts optimise the leaving-one-out (L1O) criterion, the discounting parameters introduced in mKN do not. Moreover, the approximation to the TG counts for large counts is heavily simplified. In this work, both ideas are addressed: the estimation of the discounting parameters by L1O and better functional forms to approximate larger TG counts. The L1O performance is compared with cross-validation (CV) and mKN baseline in two large vocabulary tasks.
doi_str_mv 10.1109/ICASSP.2012.6289046
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6289046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6289046</ieee_id><sourcerecordid>6289046</sourcerecordid><originalsourceid>FETCH-LOGICAL-i220t-747fa8da32cc4480717c4c1bcb384381e93baa97b683837bc1a8bc5c34cd69e73</originalsourceid><addsrcrecordid>eNo1UMtOwzAQNC-JUPIFvfgHXPyKH0dUQUFUgFSQuFWOs0GGYKM4rejfE9Syl9XOzK5mB6EpozPGqL26n1-vVs8zThmfKW4sleoIlVYbJpUWdBztMSq40JYwS99O0MU_UclTVLCKU6KYtOeozPmDjjWuUqEK1M5TbMIQUnQd7sBtQ3wnKQJJmwG72GDfp5zJ1nWhcX8y3KYeNyH7tIkDhjyErz0eIn6IkKEnj7AjXfgEDD8DxDyS-RKdta7LUB76BL3e3rzM78jyaTE-tySBczoQLXXrTOME915KQzXTXnpW-1oYKQwDK2rnrK6VEUbo2jNnal95IX2jLGgxQdP93QAA6-9-NNfv1ofIxC8gel3X</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Conditional leaving-one-out and cross-validation for discount estimation in Kneser-Ney-like extensions</title><source>IEEE Xplore All Conference Series</source><creator>Andres-Ferrer, J. ; Sundermeyer, M. ; Ney, H.</creator><creatorcontrib>Andres-Ferrer, J. ; Sundermeyer, M. ; Ney, H.</creatorcontrib><description>The smoothing of n-gram models is a core technique in language modelling (LM). Modified Kneser-Ney (mKN) ranges among one of the best smoothing techniques. This technique discounts a fixed quantity from the observed counts in order to approximate the Turing-Good (TG) counts. Despite the TG counts optimise the leaving-one-out (L1O) criterion, the discounting parameters introduced in mKN do not. Moreover, the approximation to the TG counts for large counts is heavily simplified. In this work, both ideas are addressed: the estimation of the discounting parameters by L1O and better functional forms to approximate larger TG counts. The L1O performance is compared with cross-validation (CV) and mKN baseline in two large vocabulary tasks.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 1467300454</identifier><identifier>ISBN: 9781467300452</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781467300469</identifier><identifier>EISBN: 1467300446</identifier><identifier>EISBN: 9781467300445</identifier><identifier>EISBN: 1467300462</identifier><identifier>DOI: 10.1109/ICASSP.2012.6289046</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation methods ; Computational modeling ; Cross Validation ; Estimation ; Language Modelling ; Leaving-One-Out ; modified Kneser-Ney smoothing ; Optimization ; Smoothing methods ; Training</subject><ispartof>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, p.5013-5016</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6289046$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6289046$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Andres-Ferrer, J.</creatorcontrib><creatorcontrib>Sundermeyer, M.</creatorcontrib><creatorcontrib>Ney, H.</creatorcontrib><title>Conditional leaving-one-out and cross-validation for discount estimation in Kneser-Ney-like extensions</title><title>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>The smoothing of n-gram models is a core technique in language modelling (LM). Modified Kneser-Ney (mKN) ranges among one of the best smoothing techniques. This technique discounts a fixed quantity from the observed counts in order to approximate the Turing-Good (TG) counts. Despite the TG counts optimise the leaving-one-out (L1O) criterion, the discounting parameters introduced in mKN do not. Moreover, the approximation to the TG counts for large counts is heavily simplified. In this work, both ideas are addressed: the estimation of the discounting parameters by L1O and better functional forms to approximate larger TG counts. The L1O performance is compared with cross-validation (CV) and mKN baseline in two large vocabulary tasks.</description><subject>Approximation methods</subject><subject>Computational modeling</subject><subject>Cross Validation</subject><subject>Estimation</subject><subject>Language Modelling</subject><subject>Leaving-One-Out</subject><subject>modified Kneser-Ney smoothing</subject><subject>Optimization</subject><subject>Smoothing methods</subject><subject>Training</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>1467300454</isbn><isbn>9781467300452</isbn><isbn>9781467300469</isbn><isbn>1467300446</isbn><isbn>9781467300445</isbn><isbn>1467300462</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1UMtOwzAQNC-JUPIFvfgHXPyKH0dUQUFUgFSQuFWOs0GGYKM4rejfE9Syl9XOzK5mB6EpozPGqL26n1-vVs8zThmfKW4sleoIlVYbJpUWdBztMSq40JYwS99O0MU_UclTVLCKU6KYtOeozPmDjjWuUqEK1M5TbMIQUnQd7sBtQ3wnKQJJmwG72GDfp5zJ1nWhcX8y3KYeNyH7tIkDhjyErz0eIn6IkKEnj7AjXfgEDD8DxDyS-RKdta7LUB76BL3e3rzM78jyaTE-tySBczoQLXXrTOME915KQzXTXnpW-1oYKQwDK2rnrK6VEUbo2jNnal95IX2jLGgxQdP93QAA6-9-NNfv1ofIxC8gel3X</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Andres-Ferrer, J.</creator><creator>Sundermeyer, M.</creator><creator>Ney, H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20120101</creationdate><title>Conditional leaving-one-out and cross-validation for discount estimation in Kneser-Ney-like extensions</title><author>Andres-Ferrer, J. ; Sundermeyer, M. ; Ney, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i220t-747fa8da32cc4480717c4c1bcb384381e93baa97b683837bc1a8bc5c34cd69e73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Approximation methods</topic><topic>Computational modeling</topic><topic>Cross Validation</topic><topic>Estimation</topic><topic>Language Modelling</topic><topic>Leaving-One-Out</topic><topic>modified Kneser-Ney smoothing</topic><topic>Optimization</topic><topic>Smoothing methods</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Andres-Ferrer, J.</creatorcontrib><creatorcontrib>Sundermeyer, M.</creatorcontrib><creatorcontrib>Ney, H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Andres-Ferrer, J.</au><au>Sundermeyer, M.</au><au>Ney, H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Conditional leaving-one-out and cross-validation for discount estimation in Kneser-Ney-like extensions</atitle><btitle>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2012-01-01</date><risdate>2012</risdate><spage>5013</spage><epage>5016</epage><pages>5013-5016</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>1467300454</isbn><isbn>9781467300452</isbn><eisbn>9781467300469</eisbn><eisbn>1467300446</eisbn><eisbn>9781467300445</eisbn><eisbn>1467300462</eisbn><abstract>The smoothing of n-gram models is a core technique in language modelling (LM). Modified Kneser-Ney (mKN) ranges among one of the best smoothing techniques. This technique discounts a fixed quantity from the observed counts in order to approximate the Turing-Good (TG) counts. Despite the TG counts optimise the leaving-one-out (L1O) criterion, the discounting parameters introduced in mKN do not. Moreover, the approximation to the TG counts for large counts is heavily simplified. In this work, both ideas are addressed: the estimation of the discounting parameters by L1O and better functional forms to approximate larger TG counts. The L1O performance is compared with cross-validation (CV) and mKN baseline in two large vocabulary tasks.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2012.6289046</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, p.5013-5016
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_6289046
source IEEE Xplore All Conference Series
subjects Approximation methods
Computational modeling
Cross Validation
Estimation
Language Modelling
Leaving-One-Out
modified Kneser-Ney smoothing
Optimization
Smoothing methods
Training
title Conditional leaving-one-out and cross-validation for discount estimation in Kneser-Ney-like extensions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A18%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Conditional%20leaving-one-out%20and%20cross-validation%20for%20discount%20estimation%20in%20Kneser-Ney-like%20extensions&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Andres-Ferrer,%20J.&rft.date=2012-01-01&rft.spage=5013&rft.epage=5016&rft.pages=5013-5016&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=1467300454&rft.isbn_list=9781467300452&rft_id=info:doi/10.1109/ICASSP.2012.6289046&rft.eisbn=9781467300469&rft.eisbn_list=1467300446&rft.eisbn_list=9781467300445&rft.eisbn_list=1467300462&rft_dat=%3Cieee_CHZPO%3E6289046%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i220t-747fa8da32cc4480717c4c1bcb384381e93baa97b683837bc1a8bc5c34cd69e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6289046&rfr_iscdi=true