Loading…
A connectionist approach for building influence diagrams
The development of adaptive systems must face the problem of recognition as a synergy of learning and knowledge. This paper presents a method for constructing influence diagrams from backpropagation neural networks, as a way of combining the main advantages of these methodologies. The basic concepts...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The development of adaptive systems must face the problem of recognition as a synergy of learning and knowledge. This paper presents a method for constructing influence diagrams from backpropagation neural networks, as a way of combining the main advantages of these methodologies. The basic concepts of influence diagrams and neural networks are discussed as a brief review. An algorithm to extract the conditional probabilities of the network is presented and illustrated by three pattern recognition examples. Although much of the a priori information from the sample set is lost during the training phase of the network, an influence diagram that behaves as the original knowledge source can be constructed. |
---|---|
DOI: | 10.1109/CYBVIS.1996.629442 |