Loading…

Emotion detection using relative amplitude-based features through speech

Automatic speech recognition analysis has been an active part in computer science for more than two decades. In general, to detect an emotion, long continuous signal is needed. Relative amplitude reduces bias of glottal mutation of speech wave amplitude and obtains a normalized measure without conce...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohan Kudiri, Krishna, Md Said, A., Nayan, M. Y.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 525
container_issue
container_start_page 522
container_title
container_volume 1
creator Mohan Kudiri, Krishna
Md Said, A.
Nayan, M. Y.
description Automatic speech recognition analysis has been an active part in computer science for more than two decades. In general, to detect an emotion, long continuous signal is needed. Relative amplitude reduces bias of glottal mutation of speech wave amplitude and obtains a normalized measure without concern of information from being distinct in feature. Nonverbal communication plays crucial role in human-human or human-machine interpersonal relationships. In this paper, we propose the use of relative bin frequency coefficients for speech signal segmentation. Here, the support vector machine classifier is used to implement automatic emotion detection system.
doi_str_mv 10.1109/ICCISci.2012.6297301
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6297301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6297301</ieee_id><sourcerecordid>6297301</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-43d6921d459e825b572a4bc545fbb7ea41d973c44dbf2512a82891de529c4cdc3</originalsourceid><addsrcrecordid>eNpFj8tKw0AYhUdEUGufQBfzAolzzcwsJVQbKLiw-zKXP81I0oTMRPDtLVrwbM75Ngc-hJ4oKSkl5rmp6-bDx5IRysqKGcUJvUL3VFSKU8Mrff0PqrpF65Q-yTlKU6LZHdpuhjHH8YQDZPC_a0nxdMQz9DbHL8B2mPqYlwCFswkCbsHmZYaEczePy7HDaQLw3QO6aW2fYH3pFdq_bvb1tti9vzX1y66IhuRC8FAZRoOQBjSTTipmhfNSyNY5BVbQcFbwQgTXMkmZ1UwbGkAy44UPnq_Q499tBIDDNMfBzt-Hizj_ATCiTlM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Emotion detection using relative amplitude-based features through speech</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mohan Kudiri, Krishna ; Md Said, A. ; Nayan, M. Y.</creator><creatorcontrib>Mohan Kudiri, Krishna ; Md Said, A. ; Nayan, M. Y.</creatorcontrib><description>Automatic speech recognition analysis has been an active part in computer science for more than two decades. In general, to detect an emotion, long continuous signal is needed. Relative amplitude reduces bias of glottal mutation of speech wave amplitude and obtains a normalized measure without concern of information from being distinct in feature. Nonverbal communication plays crucial role in human-human or human-machine interpersonal relationships. In this paper, we propose the use of relative bin frequency coefficients for speech signal segmentation. Here, the support vector machine classifier is used to implement automatic emotion detection system.</description><identifier>ISBN: 1467319376</identifier><identifier>ISBN: 9781467319379</identifier><identifier>EISBN: 1467319368</identifier><identifier>EISBN: 9781467319386</identifier><identifier>EISBN: 1467319384</identifier><identifier>EISBN: 9781467319362</identifier><identifier>DOI: 10.1109/ICCISci.2012.6297301</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Benchmark testing ; Computational modeling ; emotion detection ; Hidden Markov models ; Kernel ; relative bin frequency features ; relative sub-image based features ; support vector machine ; Support vector machines</subject><ispartof>2012 International Conference on Computer &amp; Information Science (ICCIS), 2012, Vol.1, p.522-525</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6297301$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6297301$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mohan Kudiri, Krishna</creatorcontrib><creatorcontrib>Md Said, A.</creatorcontrib><creatorcontrib>Nayan, M. Y.</creatorcontrib><title>Emotion detection using relative amplitude-based features through speech</title><title>2012 International Conference on Computer &amp; Information Science (ICCIS)</title><addtitle>ICCISci</addtitle><description>Automatic speech recognition analysis has been an active part in computer science for more than two decades. In general, to detect an emotion, long continuous signal is needed. Relative amplitude reduces bias of glottal mutation of speech wave amplitude and obtains a normalized measure without concern of information from being distinct in feature. Nonverbal communication plays crucial role in human-human or human-machine interpersonal relationships. In this paper, we propose the use of relative bin frequency coefficients for speech signal segmentation. Here, the support vector machine classifier is used to implement automatic emotion detection system.</description><subject>Artificial neural networks</subject><subject>Benchmark testing</subject><subject>Computational modeling</subject><subject>emotion detection</subject><subject>Hidden Markov models</subject><subject>Kernel</subject><subject>relative bin frequency features</subject><subject>relative sub-image based features</subject><subject>support vector machine</subject><subject>Support vector machines</subject><isbn>1467319376</isbn><isbn>9781467319379</isbn><isbn>1467319368</isbn><isbn>9781467319386</isbn><isbn>1467319384</isbn><isbn>9781467319362</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFj8tKw0AYhUdEUGufQBfzAolzzcwsJVQbKLiw-zKXP81I0oTMRPDtLVrwbM75Ngc-hJ4oKSkl5rmp6-bDx5IRysqKGcUJvUL3VFSKU8Mrff0PqrpF65Q-yTlKU6LZHdpuhjHH8YQDZPC_a0nxdMQz9DbHL8B2mPqYlwCFswkCbsHmZYaEczePy7HDaQLw3QO6aW2fYH3pFdq_bvb1tti9vzX1y66IhuRC8FAZRoOQBjSTTipmhfNSyNY5BVbQcFbwQgTXMkmZ1UwbGkAy44UPnq_Q499tBIDDNMfBzt-Hizj_ATCiTlM</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Mohan Kudiri, Krishna</creator><creator>Md Said, A.</creator><creator>Nayan, M. Y.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201206</creationdate><title>Emotion detection using relative amplitude-based features through speech</title><author>Mohan Kudiri, Krishna ; Md Said, A. ; Nayan, M. Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-43d6921d459e825b572a4bc545fbb7ea41d973c44dbf2512a82891de529c4cdc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Artificial neural networks</topic><topic>Benchmark testing</topic><topic>Computational modeling</topic><topic>emotion detection</topic><topic>Hidden Markov models</topic><topic>Kernel</topic><topic>relative bin frequency features</topic><topic>relative sub-image based features</topic><topic>support vector machine</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Mohan Kudiri, Krishna</creatorcontrib><creatorcontrib>Md Said, A.</creatorcontrib><creatorcontrib>Nayan, M. Y.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mohan Kudiri, Krishna</au><au>Md Said, A.</au><au>Nayan, M. Y.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Emotion detection using relative amplitude-based features through speech</atitle><btitle>2012 International Conference on Computer &amp; Information Science (ICCIS)</btitle><stitle>ICCISci</stitle><date>2012-06</date><risdate>2012</risdate><volume>1</volume><spage>522</spage><epage>525</epage><pages>522-525</pages><isbn>1467319376</isbn><isbn>9781467319379</isbn><eisbn>1467319368</eisbn><eisbn>9781467319386</eisbn><eisbn>1467319384</eisbn><eisbn>9781467319362</eisbn><abstract>Automatic speech recognition analysis has been an active part in computer science for more than two decades. In general, to detect an emotion, long continuous signal is needed. Relative amplitude reduces bias of glottal mutation of speech wave amplitude and obtains a normalized measure without concern of information from being distinct in feature. Nonverbal communication plays crucial role in human-human or human-machine interpersonal relationships. In this paper, we propose the use of relative bin frequency coefficients for speech signal segmentation. Here, the support vector machine classifier is used to implement automatic emotion detection system.</abstract><pub>IEEE</pub><doi>10.1109/ICCISci.2012.6297301</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467319376
ispartof 2012 International Conference on Computer & Information Science (ICCIS), 2012, Vol.1, p.522-525
issn
language eng
recordid cdi_ieee_primary_6297301
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Benchmark testing
Computational modeling
emotion detection
Hidden Markov models
Kernel
relative bin frequency features
relative sub-image based features
support vector machine
Support vector machines
title Emotion detection using relative amplitude-based features through speech
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A32%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Emotion%20detection%20using%20relative%20amplitude-based%20features%20through%20speech&rft.btitle=2012%20International%20Conference%20on%20Computer%20&%20Information%20Science%20(ICCIS)&rft.au=Mohan%20Kudiri,%20Krishna&rft.date=2012-06&rft.volume=1&rft.spage=522&rft.epage=525&rft.pages=522-525&rft.isbn=1467319376&rft.isbn_list=9781467319379&rft_id=info:doi/10.1109/ICCISci.2012.6297301&rft.eisbn=1467319368&rft.eisbn_list=9781467319386&rft.eisbn_list=1467319384&rft.eisbn_list=9781467319362&rft_dat=%3Cieee_6IE%3E6297301%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-43d6921d459e825b572a4bc545fbb7ea41d973c44dbf2512a82891de529c4cdc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6297301&rfr_iscdi=true