Loading…
Sample area for surface roughness determination of skin surfaces
A surface roughness algorithm has been developed and validated for determining roughness of psoriasis lesions. The algorithm extracts an estimated waviness surface from 3D rough surface of psoriasis lesion by applying high order polynomial surface fitting. Vertical deviations of the lesion are deter...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 332 |
container_issue | |
container_start_page | 328 |
container_title | |
container_volume | 1 |
creator | Hani, A. F. M. Prakasa, E. Nugroho, H. Affandi, A. M. Hussein, S. H. |
description | A surface roughness algorithm has been developed and validated for determining roughness of psoriasis lesions. The algorithm extracts an estimated waviness surface from 3D rough surface of psoriasis lesion by applying high order polynomial surface fitting. Vertical deviations of the lesion are determined by subtracting its 3D surface from the estimated waviness surface. However, the performance of the algorithm is dependent on the area of skin surface. The objective of this paper is to determine the minimum area for optimal performance of the skin surface roughness algorithm. In the determined sample area, all significant roughness components must be covered for surface roughness determination. To find the minimum size of sampled area, skin surface roughness has been determined at several sampling area variations. Normal skin surfaces are used as input data in this evaluation. By referring to the plot of surface roughness dependency on sampled area variation, it can be shown that the threshold area is found to be 4.9×4.9 mm 2 for skin surface roughness stability. Skin surface roughness variation is less for the sample areas larger than this threshold. However, there is a small surface roughness increment after the surface roughness stability. It is caused by fitting error at border regions of very large sample size. |
doi_str_mv | 10.1109/ICIAS.2012.6306212 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6306212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6306212</ieee_id><sourcerecordid>6306212</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-166752ff0fa7fbe0977c0ad28f5a17254ef76460e2e87f7e6adf0d88d2578bea3</originalsourceid><addsrcrecordid>eNo1j81Kw0AUhUdEUGteQDfzAqn3TpK5k50l-BMouGj3Zdrcq6NNUmbShW-vYHs2hw8OHxyl7hHmiFA_tk27WM0NoJnbAqxBc6GymhyWFRHW1sKluj2Dw2uVpfQFf3HoSnQ36mnl-8OetY_stYxRp2MUv2Mdx-PH58Ap6Y4njn0Y_BTGQY-i03cYzrt0p67E7xNnp56p9cvzunnLl--vbbNY5qGGKUdrqTIiIJ5ky1AT7cB3xknlkUxVspAtLbBhR0JsfSfQOdeZityWfTFTD__awMybQwy9jz-b0-fiFwgISy0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Sample area for surface roughness determination of skin surfaces</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hani, A. F. M. ; Prakasa, E. ; Nugroho, H. ; Affandi, A. M. ; Hussein, S. H.</creator><creatorcontrib>Hani, A. F. M. ; Prakasa, E. ; Nugroho, H. ; Affandi, A. M. ; Hussein, S. H.</creatorcontrib><description>A surface roughness algorithm has been developed and validated for determining roughness of psoriasis lesions. The algorithm extracts an estimated waviness surface from 3D rough surface of psoriasis lesion by applying high order polynomial surface fitting. Vertical deviations of the lesion are determined by subtracting its 3D surface from the estimated waviness surface. However, the performance of the algorithm is dependent on the area of skin surface. The objective of this paper is to determine the minimum area for optimal performance of the skin surface roughness algorithm. In the determined sample area, all significant roughness components must be covered for surface roughness determination. To find the minimum size of sampled area, skin surface roughness has been determined at several sampling area variations. Normal skin surfaces are used as input data in this evaluation. By referring to the plot of surface roughness dependency on sampled area variation, it can be shown that the threshold area is found to be 4.9×4.9 mm 2 for skin surface roughness stability. Skin surface roughness variation is less for the sample areas larger than this threshold. However, there is a small surface roughness increment after the surface roughness stability. It is caused by fitting error at border regions of very large sample size.</description><identifier>ISBN: 1457719681</identifier><identifier>ISBN: 9781457719684</identifier><identifier>EISBN: 9781457719660</identifier><identifier>EISBN: 1457719673</identifier><identifier>EISBN: 1457719665</identifier><identifier>EISBN: 9781457719677</identifier><identifier>DOI: 10.1109/ICIAS.2012.6306212</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Conferences ; sample area ; skin surface roughness</subject><ispartof>2012 4th International Conference on Intelligent and Advanced Systems (ICIAS2012), 2012, Vol.1, p.328-332</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6306212$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6306212$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hani, A. F. M.</creatorcontrib><creatorcontrib>Prakasa, E.</creatorcontrib><creatorcontrib>Nugroho, H.</creatorcontrib><creatorcontrib>Affandi, A. M.</creatorcontrib><creatorcontrib>Hussein, S. H.</creatorcontrib><title>Sample area for surface roughness determination of skin surfaces</title><title>2012 4th International Conference on Intelligent and Advanced Systems (ICIAS2012)</title><addtitle>ICIAS</addtitle><description>A surface roughness algorithm has been developed and validated for determining roughness of psoriasis lesions. The algorithm extracts an estimated waviness surface from 3D rough surface of psoriasis lesion by applying high order polynomial surface fitting. Vertical deviations of the lesion are determined by subtracting its 3D surface from the estimated waviness surface. However, the performance of the algorithm is dependent on the area of skin surface. The objective of this paper is to determine the minimum area for optimal performance of the skin surface roughness algorithm. In the determined sample area, all significant roughness components must be covered for surface roughness determination. To find the minimum size of sampled area, skin surface roughness has been determined at several sampling area variations. Normal skin surfaces are used as input data in this evaluation. By referring to the plot of surface roughness dependency on sampled area variation, it can be shown that the threshold area is found to be 4.9×4.9 mm 2 for skin surface roughness stability. Skin surface roughness variation is less for the sample areas larger than this threshold. However, there is a small surface roughness increment after the surface roughness stability. It is caused by fitting error at border regions of very large sample size.</description><subject>Artificial intelligence</subject><subject>Conferences</subject><subject>sample area</subject><subject>skin surface roughness</subject><isbn>1457719681</isbn><isbn>9781457719684</isbn><isbn>9781457719660</isbn><isbn>1457719673</isbn><isbn>1457719665</isbn><isbn>9781457719677</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j81Kw0AUhUdEUGteQDfzAqn3TpK5k50l-BMouGj3Zdrcq6NNUmbShW-vYHs2hw8OHxyl7hHmiFA_tk27WM0NoJnbAqxBc6GymhyWFRHW1sKluj2Dw2uVpfQFf3HoSnQ36mnl-8OetY_stYxRp2MUv2Mdx-PH58Ap6Y4njn0Y_BTGQY-i03cYzrt0p67E7xNnp56p9cvzunnLl--vbbNY5qGGKUdrqTIiIJ5ky1AT7cB3xknlkUxVspAtLbBhR0JsfSfQOdeZityWfTFTD__awMybQwy9jz-b0-fiFwgISy0</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Hani, A. F. M.</creator><creator>Prakasa, E.</creator><creator>Nugroho, H.</creator><creator>Affandi, A. M.</creator><creator>Hussein, S. H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201206</creationdate><title>Sample area for surface roughness determination of skin surfaces</title><author>Hani, A. F. M. ; Prakasa, E. ; Nugroho, H. ; Affandi, A. M. ; Hussein, S. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-166752ff0fa7fbe0977c0ad28f5a17254ef76460e2e87f7e6adf0d88d2578bea3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Artificial intelligence</topic><topic>Conferences</topic><topic>sample area</topic><topic>skin surface roughness</topic><toplevel>online_resources</toplevel><creatorcontrib>Hani, A. F. M.</creatorcontrib><creatorcontrib>Prakasa, E.</creatorcontrib><creatorcontrib>Nugroho, H.</creatorcontrib><creatorcontrib>Affandi, A. M.</creatorcontrib><creatorcontrib>Hussein, S. H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hani, A. F. M.</au><au>Prakasa, E.</au><au>Nugroho, H.</au><au>Affandi, A. M.</au><au>Hussein, S. H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sample area for surface roughness determination of skin surfaces</atitle><btitle>2012 4th International Conference on Intelligent and Advanced Systems (ICIAS2012)</btitle><stitle>ICIAS</stitle><date>2012-06</date><risdate>2012</risdate><volume>1</volume><spage>328</spage><epage>332</epage><pages>328-332</pages><isbn>1457719681</isbn><isbn>9781457719684</isbn><eisbn>9781457719660</eisbn><eisbn>1457719673</eisbn><eisbn>1457719665</eisbn><eisbn>9781457719677</eisbn><abstract>A surface roughness algorithm has been developed and validated for determining roughness of psoriasis lesions. The algorithm extracts an estimated waviness surface from 3D rough surface of psoriasis lesion by applying high order polynomial surface fitting. Vertical deviations of the lesion are determined by subtracting its 3D surface from the estimated waviness surface. However, the performance of the algorithm is dependent on the area of skin surface. The objective of this paper is to determine the minimum area for optimal performance of the skin surface roughness algorithm. In the determined sample area, all significant roughness components must be covered for surface roughness determination. To find the minimum size of sampled area, skin surface roughness has been determined at several sampling area variations. Normal skin surfaces are used as input data in this evaluation. By referring to the plot of surface roughness dependency on sampled area variation, it can be shown that the threshold area is found to be 4.9×4.9 mm 2 for skin surface roughness stability. Skin surface roughness variation is less for the sample areas larger than this threshold. However, there is a small surface roughness increment after the surface roughness stability. It is caused by fitting error at border regions of very large sample size.</abstract><pub>IEEE</pub><doi>10.1109/ICIAS.2012.6306212</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1457719681 |
ispartof | 2012 4th International Conference on Intelligent and Advanced Systems (ICIAS2012), 2012, Vol.1, p.328-332 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6306212 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial intelligence Conferences sample area skin surface roughness |
title | Sample area for surface roughness determination of skin surfaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A01%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sample%20area%20for%20surface%20roughness%20determination%20of%20skin%20surfaces&rft.btitle=2012%204th%20International%20Conference%20on%20Intelligent%20and%20Advanced%20Systems%20(ICIAS2012)&rft.au=Hani,%20A.%20F.%20M.&rft.date=2012-06&rft.volume=1&rft.spage=328&rft.epage=332&rft.pages=328-332&rft.isbn=1457719681&rft.isbn_list=9781457719684&rft_id=info:doi/10.1109/ICIAS.2012.6306212&rft.eisbn=9781457719660&rft.eisbn_list=1457719673&rft.eisbn_list=1457719665&rft.eisbn_list=9781457719677&rft_dat=%3Cieee_6IE%3E6306212%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-166752ff0fa7fbe0977c0ad28f5a17254ef76460e2e87f7e6adf0d88d2578bea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6306212&rfr_iscdi=true |