Loading…

Network weight adjustment in a fractional fourier transform based multi-channel brain computer interface for person authentication

Brain is composed of unique complex neural structure thus electrical activity between neurons referred to as electroencephalogram (EEG) in different brain regions varies from one user to another. In this paper EEG distinctiveness is exploited through application to person authentication system based...

Full description

Saved in:
Bibliographic Details
Main Authors: Rizwan-i-Haque, I., Khan, M. F., Saleem, M., Rao, N. I.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 905
container_issue
container_start_page 900
container_title
container_volume
creator Rizwan-i-Haque, I.
Khan, M. F.
Saleem, M.
Rao, N. I.
description Brain is composed of unique complex neural structure thus electrical activity between neurons referred to as electroencephalogram (EEG) in different brain regions varies from one user to another. In this paper EEG distinctiveness is exploited through application to person authentication system based on five mental imagery tasks. Seven electrodes placed at C3, C4, P3, P4, O1, O2 and EOG are used to record EEG signals. A parallel structure of Exact Radial Basis (RBE) neural networks are used as classifiers. Individual classifier response for each mental task is evaluated and a weighting approach is used to regulate contribution of each channel within a multi-channel Brain Computer Interface (BCI) system. The estimated and experimental results indicate an average increase of 14% in system performance when tested on 722 trials of 1sec duration for 7 subjects. Fractional Fourier Transform (FRFT) with order optimization is used for feature extraction, and special one dimensional case of k-means clustering algorithm is used to calculate the threshold for individual classifiers.
doi_str_mv 10.1109/ISSPA.2012.6310682
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6310682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6310682</ieee_id><sourcerecordid>6310682</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-60a55e4987209ece7b8ca7f87282089063e33afae5165f237a5b77610d8ccc5b3</originalsourceid><addsrcrecordid>eNpVkE9LAzEQxSMiKLVfQC_5AluTzW6SPZbin0JRob2X2XRiU3ezJclSvPrJjdiLc3jDg3m_B0PIHWczzlnzsFyv3-ezkvFyJgVnUpcXZNoozSupBBOaVZf_POfXZBrjgeXRXFdM35DvV0ynIXzSE7qPfaKwO4wx9egTdZ4CtQFMcoOHjtphDA4DTQF8tEPoaQsRd7Qfu-QKswfvsaNtgBw0Q38cUz52PqsFgzke6BFDHDJ2TPvc4Az8om_JlYUu4vS8J2Tz9LhZvBSrt-flYr4qXMNSIRnUNVaNViVr0KBqtQFls9Ul0w2TAoUAC1hzWdtSKKhbpSRnO22MqVsxIfd_WIeI22NwPYSv7flx4geA1WTU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Network weight adjustment in a fractional fourier transform based multi-channel brain computer interface for person authentication</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rizwan-i-Haque, I. ; Khan, M. F. ; Saleem, M. ; Rao, N. I.</creator><creatorcontrib>Rizwan-i-Haque, I. ; Khan, M. F. ; Saleem, M. ; Rao, N. I.</creatorcontrib><description>Brain is composed of unique complex neural structure thus electrical activity between neurons referred to as electroencephalogram (EEG) in different brain regions varies from one user to another. In this paper EEG distinctiveness is exploited through application to person authentication system based on five mental imagery tasks. Seven electrodes placed at C3, C4, P3, P4, O1, O2 and EOG are used to record EEG signals. A parallel structure of Exact Radial Basis (RBE) neural networks are used as classifiers. Individual classifier response for each mental task is evaluated and a weighting approach is used to regulate contribution of each channel within a multi-channel Brain Computer Interface (BCI) system. The estimated and experimental results indicate an average increase of 14% in system performance when tested on 722 trials of 1sec duration for 7 subjects. Fractional Fourier Transform (FRFT) with order optimization is used for feature extraction, and special one dimensional case of k-means clustering algorithm is used to calculate the threshold for individual classifiers.</description><identifier>ISBN: 9781467303811</identifier><identifier>ISBN: 146730381X</identifier><identifier>EISBN: 9781467303804</identifier><identifier>EISBN: 1467303801</identifier><identifier>EISBN: 1467303828</identifier><identifier>EISBN: 9781467303828</identifier><identifier>DOI: 10.1109/ISSPA.2012.6310682</identifier><language>eng</language><publisher>IEEE</publisher><subject>Authentication ; Electrodes ; Electroencephalography ; Feature extraction ; Fourier transforms ; Neural networks ; Time frequency analysis</subject><ispartof>2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA), 2012, p.900-905</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6310682$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6310682$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rizwan-i-Haque, I.</creatorcontrib><creatorcontrib>Khan, M. F.</creatorcontrib><creatorcontrib>Saleem, M.</creatorcontrib><creatorcontrib>Rao, N. I.</creatorcontrib><title>Network weight adjustment in a fractional fourier transform based multi-channel brain computer interface for person authentication</title><title>2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)</title><addtitle>ISSPA</addtitle><description>Brain is composed of unique complex neural structure thus electrical activity between neurons referred to as electroencephalogram (EEG) in different brain regions varies from one user to another. In this paper EEG distinctiveness is exploited through application to person authentication system based on five mental imagery tasks. Seven electrodes placed at C3, C4, P3, P4, O1, O2 and EOG are used to record EEG signals. A parallel structure of Exact Radial Basis (RBE) neural networks are used as classifiers. Individual classifier response for each mental task is evaluated and a weighting approach is used to regulate contribution of each channel within a multi-channel Brain Computer Interface (BCI) system. The estimated and experimental results indicate an average increase of 14% in system performance when tested on 722 trials of 1sec duration for 7 subjects. Fractional Fourier Transform (FRFT) with order optimization is used for feature extraction, and special one dimensional case of k-means clustering algorithm is used to calculate the threshold for individual classifiers.</description><subject>Authentication</subject><subject>Electrodes</subject><subject>Electroencephalography</subject><subject>Feature extraction</subject><subject>Fourier transforms</subject><subject>Neural networks</subject><subject>Time frequency analysis</subject><isbn>9781467303811</isbn><isbn>146730381X</isbn><isbn>9781467303804</isbn><isbn>1467303801</isbn><isbn>1467303828</isbn><isbn>9781467303828</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkE9LAzEQxSMiKLVfQC_5AluTzW6SPZbin0JRob2X2XRiU3ezJclSvPrJjdiLc3jDg3m_B0PIHWczzlnzsFyv3-ezkvFyJgVnUpcXZNoozSupBBOaVZf_POfXZBrjgeXRXFdM35DvV0ynIXzSE7qPfaKwO4wx9egTdZ4CtQFMcoOHjtphDA4DTQF8tEPoaQsRd7Qfu-QKswfvsaNtgBw0Q38cUz52PqsFgzke6BFDHDJ2TPvc4Az8om_JlYUu4vS8J2Tz9LhZvBSrt-flYr4qXMNSIRnUNVaNViVr0KBqtQFls9Ul0w2TAoUAC1hzWdtSKKhbpSRnO22MqVsxIfd_WIeI22NwPYSv7flx4geA1WTU</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Rizwan-i-Haque, I.</creator><creator>Khan, M. F.</creator><creator>Saleem, M.</creator><creator>Rao, N. I.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201207</creationdate><title>Network weight adjustment in a fractional fourier transform based multi-channel brain computer interface for person authentication</title><author>Rizwan-i-Haque, I. ; Khan, M. F. ; Saleem, M. ; Rao, N. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-60a55e4987209ece7b8ca7f87282089063e33afae5165f237a5b77610d8ccc5b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Authentication</topic><topic>Electrodes</topic><topic>Electroencephalography</topic><topic>Feature extraction</topic><topic>Fourier transforms</topic><topic>Neural networks</topic><topic>Time frequency analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Rizwan-i-Haque, I.</creatorcontrib><creatorcontrib>Khan, M. F.</creatorcontrib><creatorcontrib>Saleem, M.</creatorcontrib><creatorcontrib>Rao, N. I.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rizwan-i-Haque, I.</au><au>Khan, M. F.</au><au>Saleem, M.</au><au>Rao, N. I.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Network weight adjustment in a fractional fourier transform based multi-channel brain computer interface for person authentication</atitle><btitle>2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)</btitle><stitle>ISSPA</stitle><date>2012-07</date><risdate>2012</risdate><spage>900</spage><epage>905</epage><pages>900-905</pages><isbn>9781467303811</isbn><isbn>146730381X</isbn><eisbn>9781467303804</eisbn><eisbn>1467303801</eisbn><eisbn>1467303828</eisbn><eisbn>9781467303828</eisbn><abstract>Brain is composed of unique complex neural structure thus electrical activity between neurons referred to as electroencephalogram (EEG) in different brain regions varies from one user to another. In this paper EEG distinctiveness is exploited through application to person authentication system based on five mental imagery tasks. Seven electrodes placed at C3, C4, P3, P4, O1, O2 and EOG are used to record EEG signals. A parallel structure of Exact Radial Basis (RBE) neural networks are used as classifiers. Individual classifier response for each mental task is evaluated and a weighting approach is used to regulate contribution of each channel within a multi-channel Brain Computer Interface (BCI) system. The estimated and experimental results indicate an average increase of 14% in system performance when tested on 722 trials of 1sec duration for 7 subjects. Fractional Fourier Transform (FRFT) with order optimization is used for feature extraction, and special one dimensional case of k-means clustering algorithm is used to calculate the threshold for individual classifiers.</abstract><pub>IEEE</pub><doi>10.1109/ISSPA.2012.6310682</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467303811
ispartof 2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA), 2012, p.900-905
issn
language eng
recordid cdi_ieee_primary_6310682
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Authentication
Electrodes
Electroencephalography
Feature extraction
Fourier transforms
Neural networks
Time frequency analysis
title Network weight adjustment in a fractional fourier transform based multi-channel brain computer interface for person authentication
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A39%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Network%20weight%20adjustment%20in%20a%20fractional%20fourier%20transform%20based%20multi-channel%20brain%20computer%20interface%20for%20person%20authentication&rft.btitle=2012%2011th%20International%20Conference%20on%20Information%20Science,%20Signal%20Processing%20and%20their%20Applications%20(ISSPA)&rft.au=Rizwan-i-Haque,%20I.&rft.date=2012-07&rft.spage=900&rft.epage=905&rft.pages=900-905&rft.isbn=9781467303811&rft.isbn_list=146730381X&rft_id=info:doi/10.1109/ISSPA.2012.6310682&rft.eisbn=9781467303804&rft.eisbn_list=1467303801&rft.eisbn_list=1467303828&rft.eisbn_list=9781467303828&rft_dat=%3Cieee_6IE%3E6310682%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-60a55e4987209ece7b8ca7f87282089063e33afae5165f237a5b77610d8ccc5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6310682&rfr_iscdi=true