Loading…
Mining Associations Using Directed Hypergraphs
We introduce the notion of association rules for multi-valued attributes, which is an adaptation of the definition of quantitative association rules known in the literature. The association rules for multi-valued attributes are integrated in building a novel directed hypergraph based model for datab...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | eng ; jpn |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 197 |
container_issue | |
container_start_page | 190 |
container_title | |
container_volume | |
creator | Simha, R. Tripathi, R. Thakur, M. |
description | We introduce the notion of association rules for multi-valued attributes, which is an adaptation of the definition of quantitative association rules known in the literature. The association rules for multi-valued attributes are integrated in building a novel directed hypergraph based model for databases that allows to capture attribute-level associations and their strength. Basing on this model, we provide association-based similarity notions between any two attributes and present a method for finding clusters of similar attributes. We then propose an algorithm to identify a subset of attributes known as a leading indicator that influences the values of almost all other attributes. Finally, we present an association-based classifier that can be used to predict values of attributes. We demonstrate the effectiveness of our proposed model through experiments on a financial timeseries data set (S&P 500). |
doi_str_mv | 10.1109/ICDEW.2012.56 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6313679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6313679</ieee_id><sourcerecordid>6313679</sourcerecordid><originalsourceid>FETCH-LOGICAL-i156t-76fd6c74f39c10e8b1300e148300772ba4c2abcbe77372bd37b8f8ec9d044e283</originalsourceid><addsrcrecordid>eNotjLFOwzAURY0QElAyMrHkBxLeix0_e6zSQisVsVAxVo7zUowgjews_XuC4CxH5w5XiHuEEhHs47ZZrd_LCrAqa30hMksGSNtakTJwKW5RaZKoFdC1yFL6hBmDBlR9I8qXMIThmC9TOvngpnAaUr5Pv9MqRPYTd_nmPHI8Rjd-pDtx1buvxNm_F2L_tH5rNsXu9XnbLHdFwFpPBem-055UL61HYNOiBGBUZhZR1TrlK9f6lonknJ2k1vSGve1AKa6MXIiHv9_AzIcxhm8XzwctUWqy8gcVhUMA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Mining Associations Using Directed Hypergraphs</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Simha, R. ; Tripathi, R. ; Thakur, M.</creator><creatorcontrib>Simha, R. ; Tripathi, R. ; Thakur, M.</creatorcontrib><description>We introduce the notion of association rules for multi-valued attributes, which is an adaptation of the definition of quantitative association rules known in the literature. The association rules for multi-valued attributes are integrated in building a novel directed hypergraph based model for databases that allows to capture attribute-level associations and their strength. Basing on this model, we provide association-based similarity notions between any two attributes and present a method for finding clusters of similar attributes. We then propose an algorithm to identify a subset of attributes known as a leading indicator that influences the values of almost all other attributes. Finally, we present an association-based classifier that can be used to predict values of attributes. We demonstrate the effectiveness of our proposed model through experiments on a financial timeseries data set (S&P 500).</description><identifier>ISBN: 1467316407</identifier><identifier>ISBN: 9781467316408</identifier><identifier>EISBN: 9780769547480</identifier><identifier>EISBN: 0769547486</identifier><identifier>DOI: 10.1109/ICDEW.2012.56</identifier><identifier>CODEN: IEEPAD</identifier><language>eng ; jpn</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Association rules ; Clustering algorithms ; Data models ; Predictive models</subject><ispartof>2012 IEEE 28th International Conference on Data Engineering Workshops, 2012, p.190-197</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6313679$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6313679$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Simha, R.</creatorcontrib><creatorcontrib>Tripathi, R.</creatorcontrib><creatorcontrib>Thakur, M.</creatorcontrib><title>Mining Associations Using Directed Hypergraphs</title><title>2012 IEEE 28th International Conference on Data Engineering Workshops</title><addtitle>icdew</addtitle><description>We introduce the notion of association rules for multi-valued attributes, which is an adaptation of the definition of quantitative association rules known in the literature. The association rules for multi-valued attributes are integrated in building a novel directed hypergraph based model for databases that allows to capture attribute-level associations and their strength. Basing on this model, we provide association-based similarity notions between any two attributes and present a method for finding clusters of similar attributes. We then propose an algorithm to identify a subset of attributes known as a leading indicator that influences the values of almost all other attributes. Finally, we present an association-based classifier that can be used to predict values of attributes. We demonstrate the effectiveness of our proposed model through experiments on a financial timeseries data set (S&P 500).</description><subject>Algorithm design and analysis</subject><subject>Association rules</subject><subject>Clustering algorithms</subject><subject>Data models</subject><subject>Predictive models</subject><isbn>1467316407</isbn><isbn>9781467316408</isbn><isbn>9780769547480</isbn><isbn>0769547486</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjLFOwzAURY0QElAyMrHkBxLeix0_e6zSQisVsVAxVo7zUowgjews_XuC4CxH5w5XiHuEEhHs47ZZrd_LCrAqa30hMksGSNtakTJwKW5RaZKoFdC1yFL6hBmDBlR9I8qXMIThmC9TOvngpnAaUr5Pv9MqRPYTd_nmPHI8Rjd-pDtx1buvxNm_F2L_tH5rNsXu9XnbLHdFwFpPBem-055UL61HYNOiBGBUZhZR1TrlK9f6lonknJ2k1vSGve1AKa6MXIiHv9_AzIcxhm8XzwctUWqy8gcVhUMA</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Simha, R.</creator><creator>Tripathi, R.</creator><creator>Thakur, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201204</creationdate><title>Mining Associations Using Directed Hypergraphs</title><author>Simha, R. ; Tripathi, R. ; Thakur, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i156t-76fd6c74f39c10e8b1300e148300772ba4c2abcbe77372bd37b8f8ec9d044e283</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng ; jpn</language><creationdate>2012</creationdate><topic>Algorithm design and analysis</topic><topic>Association rules</topic><topic>Clustering algorithms</topic><topic>Data models</topic><topic>Predictive models</topic><toplevel>online_resources</toplevel><creatorcontrib>Simha, R.</creatorcontrib><creatorcontrib>Tripathi, R.</creatorcontrib><creatorcontrib>Thakur, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Simha, R.</au><au>Tripathi, R.</au><au>Thakur, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Mining Associations Using Directed Hypergraphs</atitle><btitle>2012 IEEE 28th International Conference on Data Engineering Workshops</btitle><stitle>icdew</stitle><date>2012-04</date><risdate>2012</risdate><spage>190</spage><epage>197</epage><pages>190-197</pages><isbn>1467316407</isbn><isbn>9781467316408</isbn><eisbn>9780769547480</eisbn><eisbn>0769547486</eisbn><coden>IEEPAD</coden><abstract>We introduce the notion of association rules for multi-valued attributes, which is an adaptation of the definition of quantitative association rules known in the literature. The association rules for multi-valued attributes are integrated in building a novel directed hypergraph based model for databases that allows to capture attribute-level associations and their strength. Basing on this model, we provide association-based similarity notions between any two attributes and present a method for finding clusters of similar attributes. We then propose an algorithm to identify a subset of attributes known as a leading indicator that influences the values of almost all other attributes. Finally, we present an association-based classifier that can be used to predict values of attributes. We demonstrate the effectiveness of our proposed model through experiments on a financial timeseries data set (S&P 500).</abstract><pub>IEEE</pub><doi>10.1109/ICDEW.2012.56</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1467316407 |
ispartof | 2012 IEEE 28th International Conference on Data Engineering Workshops, 2012, p.190-197 |
issn | |
language | eng ; jpn |
recordid | cdi_ieee_primary_6313679 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Association rules Clustering algorithms Data models Predictive models |
title | Mining Associations Using Directed Hypergraphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A51%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Mining%20Associations%20Using%20Directed%20Hypergraphs&rft.btitle=2012%20IEEE%2028th%20International%20Conference%20on%20Data%20Engineering%20Workshops&rft.au=Simha,%20R.&rft.date=2012-04&rft.spage=190&rft.epage=197&rft.pages=190-197&rft.isbn=1467316407&rft.isbn_list=9781467316408&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICDEW.2012.56&rft.eisbn=9780769547480&rft.eisbn_list=0769547486&rft_dat=%3Cieee_6IE%3E6313679%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i156t-76fd6c74f39c10e8b1300e148300772ba4c2abcbe77372bd37b8f8ec9d044e283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6313679&rfr_iscdi=true |