Loading…

Calibration of polarimetric radar systems

The calibration of reciprocal radar systems has been studied previously, where it was shown: (1) that full polarimetric calibration of radar systems can remove cross-polarization errors from the measurements, and (2) that for reciprocal radars Fourier analysis of polarimetric data obtained using a r...

Full description

Saved in:
Bibliographic Details
Main Authors: Muth, L.A., Wittmann, R.C.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 833 vol.2
container_issue
container_start_page 830
container_title
container_volume 2
creator Muth, L.A.
Wittmann, R.C.
description The calibration of reciprocal radar systems has been studied previously, where it was shown: (1) that full polarimetric calibration of radar systems can remove cross-polarization errors from the measurements, and (2) that for reciprocal radars Fourier analysis of polarimetric data obtained using a rotating dihedral can reduce the noise and background errors in the calibration. To calibrate nonreciprocol radar systems, we must obtain full polarimetric data from two objects whose scattering matrices have independent eigenvectors. Thus, in addition to a rotating dihedral, a sphere or a flat plate is needed to solve for the transmitting and receiving characteristics of the system. We find the current methods of solution of the calibration equations unattractive for the following reasons: (1) noise and clutter rejection is not built into the analysis, and (2) the mathematics seems unnecessarily complicated. In addition to mathematical simplification, several ways to verify data integrity are presented, so that system problems can be detected early in the calibration phase.
doi_str_mv 10.1109/APS.1997.631589
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_631589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>631589</ieee_id><sourcerecordid>631589</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-bdda345afce37428bbf27c0a0d10d2988124154304e9eaf9a502b4d3ef2b033b3</originalsourceid><addsrcrecordid>eNotj0FLAzEQRgMiqLVnwdNePew6ySQmOZZFrVCwUD2XyWYCka1bkr3031uo3-XdHu8T4kFCJyX459V210nvbfeC0jh_Je7AOkAtrcMbsaz1B87TxoCGW_HU05hDoTlPv82UmuM0UskHnksemkKRSlNPdeZDvRfXicbKy38uxPfb61e_bjef7x_9atNmCXpuQ4yE2lAaGK1WLoSk7AAEUUJU3jmptDQaQbNnSp4MqKAjclIBEAMuxOPFm5l5fzzHUDntL2fwD0QtPvc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Calibration of polarimetric radar systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Muth, L.A. ; Wittmann, R.C.</creator><creatorcontrib>Muth, L.A. ; Wittmann, R.C.</creatorcontrib><description>The calibration of reciprocal radar systems has been studied previously, where it was shown: (1) that full polarimetric calibration of radar systems can remove cross-polarization errors from the measurements, and (2) that for reciprocal radars Fourier analysis of polarimetric data obtained using a rotating dihedral can reduce the noise and background errors in the calibration. To calibrate nonreciprocol radar systems, we must obtain full polarimetric data from two objects whose scattering matrices have independent eigenvectors. Thus, in addition to a rotating dihedral, a sphere or a flat plate is needed to solve for the transmitting and receiving characteristics of the system. We find the current methods of solution of the calibration equations unattractive for the following reasons: (1) noise and clutter rejection is not built into the analysis, and (2) the mathematics seems unnecessarily complicated. In addition to mathematical simplification, several ways to verify data integrity are presented, so that system problems can be detected early in the calibration phase.</description><identifier>ISBN: 0780341783</identifier><identifier>ISBN: 9780780341784</identifier><identifier>DOI: 10.1109/APS.1997.631589</identifier><language>eng</language><publisher>IEEE</publisher><subject>Background noise ; Calibration ; Data analysis ; Equations ; Noise measurement ; Noise reduction ; Radar measurements ; Radar polarimetry ; Radar scattering ; Rotation measurement</subject><ispartof>IEEE Antennas and Propagation Society International Symposium 1997. Digest, 1997, Vol.2, p.830-833 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/631589$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/631589$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Muth, L.A.</creatorcontrib><creatorcontrib>Wittmann, R.C.</creatorcontrib><title>Calibration of polarimetric radar systems</title><title>IEEE Antennas and Propagation Society International Symposium 1997. Digest</title><addtitle>APS</addtitle><description>The calibration of reciprocal radar systems has been studied previously, where it was shown: (1) that full polarimetric calibration of radar systems can remove cross-polarization errors from the measurements, and (2) that for reciprocal radars Fourier analysis of polarimetric data obtained using a rotating dihedral can reduce the noise and background errors in the calibration. To calibrate nonreciprocol radar systems, we must obtain full polarimetric data from two objects whose scattering matrices have independent eigenvectors. Thus, in addition to a rotating dihedral, a sphere or a flat plate is needed to solve for the transmitting and receiving characteristics of the system. We find the current methods of solution of the calibration equations unattractive for the following reasons: (1) noise and clutter rejection is not built into the analysis, and (2) the mathematics seems unnecessarily complicated. In addition to mathematical simplification, several ways to verify data integrity are presented, so that system problems can be detected early in the calibration phase.</description><subject>Background noise</subject><subject>Calibration</subject><subject>Data analysis</subject><subject>Equations</subject><subject>Noise measurement</subject><subject>Noise reduction</subject><subject>Radar measurements</subject><subject>Radar polarimetry</subject><subject>Radar scattering</subject><subject>Rotation measurement</subject><isbn>0780341783</isbn><isbn>9780780341784</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1997</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj0FLAzEQRgMiqLVnwdNePew6ySQmOZZFrVCwUD2XyWYCka1bkr3031uo3-XdHu8T4kFCJyX459V210nvbfeC0jh_Je7AOkAtrcMbsaz1B87TxoCGW_HU05hDoTlPv82UmuM0UskHnksemkKRSlNPdeZDvRfXicbKy38uxPfb61e_bjef7x_9atNmCXpuQ4yE2lAaGK1WLoSk7AAEUUJU3jmptDQaQbNnSp4MqKAjclIBEAMuxOPFm5l5fzzHUDntL2fwD0QtPvc</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>Muth, L.A.</creator><creator>Wittmann, R.C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1997</creationdate><title>Calibration of polarimetric radar systems</title><author>Muth, L.A. ; Wittmann, R.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-bdda345afce37428bbf27c0a0d10d2988124154304e9eaf9a502b4d3ef2b033b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Background noise</topic><topic>Calibration</topic><topic>Data analysis</topic><topic>Equations</topic><topic>Noise measurement</topic><topic>Noise reduction</topic><topic>Radar measurements</topic><topic>Radar polarimetry</topic><topic>Radar scattering</topic><topic>Rotation measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Muth, L.A.</creatorcontrib><creatorcontrib>Wittmann, R.C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Muth, L.A.</au><au>Wittmann, R.C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Calibration of polarimetric radar systems</atitle><btitle>IEEE Antennas and Propagation Society International Symposium 1997. Digest</btitle><stitle>APS</stitle><date>1997</date><risdate>1997</risdate><volume>2</volume><spage>830</spage><epage>833 vol.2</epage><pages>830-833 vol.2</pages><isbn>0780341783</isbn><isbn>9780780341784</isbn><abstract>The calibration of reciprocal radar systems has been studied previously, where it was shown: (1) that full polarimetric calibration of radar systems can remove cross-polarization errors from the measurements, and (2) that for reciprocal radars Fourier analysis of polarimetric data obtained using a rotating dihedral can reduce the noise and background errors in the calibration. To calibrate nonreciprocol radar systems, we must obtain full polarimetric data from two objects whose scattering matrices have independent eigenvectors. Thus, in addition to a rotating dihedral, a sphere or a flat plate is needed to solve for the transmitting and receiving characteristics of the system. We find the current methods of solution of the calibration equations unattractive for the following reasons: (1) noise and clutter rejection is not built into the analysis, and (2) the mathematics seems unnecessarily complicated. In addition to mathematical simplification, several ways to verify data integrity are presented, so that system problems can be detected early in the calibration phase.</abstract><pub>IEEE</pub><doi>10.1109/APS.1997.631589</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780341783
ispartof IEEE Antennas and Propagation Society International Symposium 1997. Digest, 1997, Vol.2, p.830-833 vol.2
issn
language eng
recordid cdi_ieee_primary_631589
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Background noise
Calibration
Data analysis
Equations
Noise measurement
Noise reduction
Radar measurements
Radar polarimetry
Radar scattering
Rotation measurement
title Calibration of polarimetric radar systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A37%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Calibration%20of%20polarimetric%20radar%20systems&rft.btitle=IEEE%20Antennas%20and%20Propagation%20Society%20International%20Symposium%201997.%20Digest&rft.au=Muth,%20L.A.&rft.date=1997&rft.volume=2&rft.spage=830&rft.epage=833%20vol.2&rft.pages=830-833%20vol.2&rft.isbn=0780341783&rft.isbn_list=9780780341784&rft_id=info:doi/10.1109/APS.1997.631589&rft_dat=%3Cieee_6IE%3E631589%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i104t-bdda345afce37428bbf27c0a0d10d2988124154304e9eaf9a502b4d3ef2b033b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=631589&rfr_iscdi=true