Loading…
Performance of Parallel Sparse Matrix-Vector Multiplications in Linear Solves on Multiple GPUs
Modern numerical simulations often require solving extremely large sparse linear systems. Solving these linear systems using Krylov iterative methods requires repeated sparse matrix-vector multiplications which can be the most computationally expensive part of the simulation. Since Graphics Processi...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 152 |
container_issue | |
container_start_page | 149 |
container_title | |
container_volume | |
creator | Jamroz, B. Mullowney, P. |
description | Modern numerical simulations often require solving extremely large sparse linear systems. Solving these linear systems using Krylov iterative methods requires repeated sparse matrix-vector multiplications which can be the most computationally expensive part of the simulation. Since Graphics Processing Units (GPUs) provide a significant increase in floating point operations per second and memory bandwidth over conventional Central Processing Units (CPUs), performing sparse matrix-vector multiplications with these co-processors can decrease the amount of time required to solve a given linear system. In this paper, we investigate the performance of sparse matrix-vector multiplications across multiple GPUs. This is performed in the context of the solution of symmetric positive-definite linear systems using a conjugate-gradient iteration preconditioned with a least-squares polynomial preconditioner using the PETSc library. |
doi_str_mv | 10.1109/SAAHPC.2012.27 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6319205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6319205</ieee_id><sourcerecordid>6319205</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-53b480b57bd701e132713635a4b73e9f99148d47babc22d745c93299fc4eb1f13</originalsourceid><addsrcrecordid>eNo9jEtLAzEURuMLbGu3btzkD0zNzWOSLEuxrdDiQK24siTTOxBJZ0oyiv57BR_f5izO4SPkGtgEgNnbzXS6rGYTzoBPuD4hQ6ZLq6QRRp2SAYeyLBSo5zMyBFlqwY3h7PxfCHFJxjm_su8Z0MDNgLxUmJouHVxbI-0aWrnkYsRIN0eXMtK161P4KJ6w7rtE12-xD8cYateHrs00tHQVWnSJbrr4jpl27V-DdFFt8xW5aFzMOP7liGznd4-zZbF6WNzPpqsigFZ9oYSXhnml_V4zQBBcgyiFctJrgbaxFqTZS-2drznfa6lqK7i1TS3RQwNiRG5-fgMi7o4pHFz63JUCLGdKfAHAm1dU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Performance of Parallel Sparse Matrix-Vector Multiplications in Linear Solves on Multiple GPUs</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jamroz, B. ; Mullowney, P.</creator><creatorcontrib>Jamroz, B. ; Mullowney, P.</creatorcontrib><description>Modern numerical simulations often require solving extremely large sparse linear systems. Solving these linear systems using Krylov iterative methods requires repeated sparse matrix-vector multiplications which can be the most computationally expensive part of the simulation. Since Graphics Processing Units (GPUs) provide a significant increase in floating point operations per second and memory bandwidth over conventional Central Processing Units (CPUs), performing sparse matrix-vector multiplications with these co-processors can decrease the amount of time required to solve a given linear system. In this paper, we investigate the performance of sparse matrix-vector multiplications across multiple GPUs. This is performed in the context of the solution of symmetric positive-definite linear systems using a conjugate-gradient iteration preconditioned with a least-squares polynomial preconditioner using the PETSc library.</description><identifier>ISSN: 2166-5133</identifier><identifier>ISBN: 1467328820</identifier><identifier>ISBN: 9781467328821</identifier><identifier>EISSN: 2166-515X</identifier><identifier>EISBN: 0769548385</identifier><identifier>EISBN: 9780769548388</identifier><identifier>DOI: 10.1109/SAAHPC.2012.27</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation methods ; Graphics processing unit ; graphics processing units ; linear algebra ; Linear systems ; Performance evaluation ; Polynomials ; preconditioner ; Sparse matrices ; Vectors</subject><ispartof>2012 Symposium on Application Accelerators in High Performance Computing, 2012, p.149-152</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6319205$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54534,54899,54911</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6319205$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jamroz, B.</creatorcontrib><creatorcontrib>Mullowney, P.</creatorcontrib><title>Performance of Parallel Sparse Matrix-Vector Multiplications in Linear Solves on Multiple GPUs</title><title>2012 Symposium on Application Accelerators in High Performance Computing</title><addtitle>saahpc</addtitle><description>Modern numerical simulations often require solving extremely large sparse linear systems. Solving these linear systems using Krylov iterative methods requires repeated sparse matrix-vector multiplications which can be the most computationally expensive part of the simulation. Since Graphics Processing Units (GPUs) provide a significant increase in floating point operations per second and memory bandwidth over conventional Central Processing Units (CPUs), performing sparse matrix-vector multiplications with these co-processors can decrease the amount of time required to solve a given linear system. In this paper, we investigate the performance of sparse matrix-vector multiplications across multiple GPUs. This is performed in the context of the solution of symmetric positive-definite linear systems using a conjugate-gradient iteration preconditioned with a least-squares polynomial preconditioner using the PETSc library.</description><subject>Approximation methods</subject><subject>Graphics processing unit</subject><subject>graphics processing units</subject><subject>linear algebra</subject><subject>Linear systems</subject><subject>Performance evaluation</subject><subject>Polynomials</subject><subject>preconditioner</subject><subject>Sparse matrices</subject><subject>Vectors</subject><issn>2166-5133</issn><issn>2166-515X</issn><isbn>1467328820</isbn><isbn>9781467328821</isbn><isbn>0769548385</isbn><isbn>9780769548388</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9jEtLAzEURuMLbGu3btzkD0zNzWOSLEuxrdDiQK24siTTOxBJZ0oyiv57BR_f5izO4SPkGtgEgNnbzXS6rGYTzoBPuD4hQ6ZLq6QRRp2SAYeyLBSo5zMyBFlqwY3h7PxfCHFJxjm_su8Z0MDNgLxUmJouHVxbI-0aWrnkYsRIN0eXMtK161P4KJ6w7rtE12-xD8cYateHrs00tHQVWnSJbrr4jpl27V-DdFFt8xW5aFzMOP7liGznd4-zZbF6WNzPpqsigFZ9oYSXhnml_V4zQBBcgyiFctJrgbaxFqTZS-2drznfa6lqK7i1TS3RQwNiRG5-fgMi7o4pHFz63JUCLGdKfAHAm1dU</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Jamroz, B.</creator><creator>Mullowney, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201207</creationdate><title>Performance of Parallel Sparse Matrix-Vector Multiplications in Linear Solves on Multiple GPUs</title><author>Jamroz, B. ; Mullowney, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-53b480b57bd701e132713635a4b73e9f99148d47babc22d745c93299fc4eb1f13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Approximation methods</topic><topic>Graphics processing unit</topic><topic>graphics processing units</topic><topic>linear algebra</topic><topic>Linear systems</topic><topic>Performance evaluation</topic><topic>Polynomials</topic><topic>preconditioner</topic><topic>Sparse matrices</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Jamroz, B.</creatorcontrib><creatorcontrib>Mullowney, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jamroz, B.</au><au>Mullowney, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Performance of Parallel Sparse Matrix-Vector Multiplications in Linear Solves on Multiple GPUs</atitle><btitle>2012 Symposium on Application Accelerators in High Performance Computing</btitle><stitle>saahpc</stitle><date>2012-07</date><risdate>2012</risdate><spage>149</spage><epage>152</epage><pages>149-152</pages><issn>2166-5133</issn><eissn>2166-515X</eissn><isbn>1467328820</isbn><isbn>9781467328821</isbn><eisbn>0769548385</eisbn><eisbn>9780769548388</eisbn><coden>IEEPAD</coden><abstract>Modern numerical simulations often require solving extremely large sparse linear systems. Solving these linear systems using Krylov iterative methods requires repeated sparse matrix-vector multiplications which can be the most computationally expensive part of the simulation. Since Graphics Processing Units (GPUs) provide a significant increase in floating point operations per second and memory bandwidth over conventional Central Processing Units (CPUs), performing sparse matrix-vector multiplications with these co-processors can decrease the amount of time required to solve a given linear system. In this paper, we investigate the performance of sparse matrix-vector multiplications across multiple GPUs. This is performed in the context of the solution of symmetric positive-definite linear systems using a conjugate-gradient iteration preconditioned with a least-squares polynomial preconditioner using the PETSc library.</abstract><pub>IEEE</pub><doi>10.1109/SAAHPC.2012.27</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2166-5133 |
ispartof | 2012 Symposium on Application Accelerators in High Performance Computing, 2012, p.149-152 |
issn | 2166-5133 2166-515X |
language | eng |
recordid | cdi_ieee_primary_6319205 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Approximation methods Graphics processing unit graphics processing units linear algebra Linear systems Performance evaluation Polynomials preconditioner Sparse matrices Vectors |
title | Performance of Parallel Sparse Matrix-Vector Multiplications in Linear Solves on Multiple GPUs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A54%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Performance%20of%20Parallel%20Sparse%20Matrix-Vector%20Multiplications%20in%20Linear%20Solves%20on%20Multiple%20GPUs&rft.btitle=2012%20Symposium%20on%20Application%20Accelerators%20in%20High%20Performance%20Computing&rft.au=Jamroz,%20B.&rft.date=2012-07&rft.spage=149&rft.epage=152&rft.pages=149-152&rft.issn=2166-5133&rft.eissn=2166-515X&rft.isbn=1467328820&rft.isbn_list=9781467328821&rft.coden=IEEPAD&rft_id=info:doi/10.1109/SAAHPC.2012.27&rft.eisbn=0769548385&rft.eisbn_list=9780769548388&rft_dat=%3Cieee_6IE%3E6319205%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-53b480b57bd701e132713635a4b73e9f99148d47babc22d745c93299fc4eb1f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6319205&rfr_iscdi=true |