Loading…

Performance of Parallel Sparse Matrix-Vector Multiplications in Linear Solves on Multiple GPUs

Modern numerical simulations often require solving extremely large sparse linear systems. Solving these linear systems using Krylov iterative methods requires repeated sparse matrix-vector multiplications which can be the most computationally expensive part of the simulation. Since Graphics Processi...

Full description

Saved in:
Bibliographic Details
Main Authors: Jamroz, B., Mullowney, P.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 152
container_issue
container_start_page 149
container_title
container_volume
creator Jamroz, B.
Mullowney, P.
description Modern numerical simulations often require solving extremely large sparse linear systems. Solving these linear systems using Krylov iterative methods requires repeated sparse matrix-vector multiplications which can be the most computationally expensive part of the simulation. Since Graphics Processing Units (GPUs) provide a significant increase in floating point operations per second and memory bandwidth over conventional Central Processing Units (CPUs), performing sparse matrix-vector multiplications with these co-processors can decrease the amount of time required to solve a given linear system. In this paper, we investigate the performance of sparse matrix-vector multiplications across multiple GPUs. This is performed in the context of the solution of symmetric positive-definite linear systems using a conjugate-gradient iteration preconditioned with a least-squares polynomial preconditioner using the PETSc library.
doi_str_mv 10.1109/SAAHPC.2012.27
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6319205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6319205</ieee_id><sourcerecordid>6319205</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-53b480b57bd701e132713635a4b73e9f99148d47babc22d745c93299fc4eb1f13</originalsourceid><addsrcrecordid>eNo9jEtLAzEURuMLbGu3btzkD0zNzWOSLEuxrdDiQK24siTTOxBJZ0oyiv57BR_f5izO4SPkGtgEgNnbzXS6rGYTzoBPuD4hQ6ZLq6QRRp2SAYeyLBSo5zMyBFlqwY3h7PxfCHFJxjm_su8Z0MDNgLxUmJouHVxbI-0aWrnkYsRIN0eXMtK161P4KJ6w7rtE12-xD8cYateHrs00tHQVWnSJbrr4jpl27V-DdFFt8xW5aFzMOP7liGznd4-zZbF6WNzPpqsigFZ9oYSXhnml_V4zQBBcgyiFctJrgbaxFqTZS-2drznfa6lqK7i1TS3RQwNiRG5-fgMi7o4pHFz63JUCLGdKfAHAm1dU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Performance of Parallel Sparse Matrix-Vector Multiplications in Linear Solves on Multiple GPUs</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jamroz, B. ; Mullowney, P.</creator><creatorcontrib>Jamroz, B. ; Mullowney, P.</creatorcontrib><description>Modern numerical simulations often require solving extremely large sparse linear systems. Solving these linear systems using Krylov iterative methods requires repeated sparse matrix-vector multiplications which can be the most computationally expensive part of the simulation. Since Graphics Processing Units (GPUs) provide a significant increase in floating point operations per second and memory bandwidth over conventional Central Processing Units (CPUs), performing sparse matrix-vector multiplications with these co-processors can decrease the amount of time required to solve a given linear system. In this paper, we investigate the performance of sparse matrix-vector multiplications across multiple GPUs. This is performed in the context of the solution of symmetric positive-definite linear systems using a conjugate-gradient iteration preconditioned with a least-squares polynomial preconditioner using the PETSc library.</description><identifier>ISSN: 2166-5133</identifier><identifier>ISBN: 1467328820</identifier><identifier>ISBN: 9781467328821</identifier><identifier>EISSN: 2166-515X</identifier><identifier>EISBN: 0769548385</identifier><identifier>EISBN: 9780769548388</identifier><identifier>DOI: 10.1109/SAAHPC.2012.27</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation methods ; Graphics processing unit ; graphics processing units ; linear algebra ; Linear systems ; Performance evaluation ; Polynomials ; preconditioner ; Sparse matrices ; Vectors</subject><ispartof>2012 Symposium on Application Accelerators in High Performance Computing, 2012, p.149-152</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6319205$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54534,54899,54911</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6319205$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jamroz, B.</creatorcontrib><creatorcontrib>Mullowney, P.</creatorcontrib><title>Performance of Parallel Sparse Matrix-Vector Multiplications in Linear Solves on Multiple GPUs</title><title>2012 Symposium on Application Accelerators in High Performance Computing</title><addtitle>saahpc</addtitle><description>Modern numerical simulations often require solving extremely large sparse linear systems. Solving these linear systems using Krylov iterative methods requires repeated sparse matrix-vector multiplications which can be the most computationally expensive part of the simulation. Since Graphics Processing Units (GPUs) provide a significant increase in floating point operations per second and memory bandwidth over conventional Central Processing Units (CPUs), performing sparse matrix-vector multiplications with these co-processors can decrease the amount of time required to solve a given linear system. In this paper, we investigate the performance of sparse matrix-vector multiplications across multiple GPUs. This is performed in the context of the solution of symmetric positive-definite linear systems using a conjugate-gradient iteration preconditioned with a least-squares polynomial preconditioner using the PETSc library.</description><subject>Approximation methods</subject><subject>Graphics processing unit</subject><subject>graphics processing units</subject><subject>linear algebra</subject><subject>Linear systems</subject><subject>Performance evaluation</subject><subject>Polynomials</subject><subject>preconditioner</subject><subject>Sparse matrices</subject><subject>Vectors</subject><issn>2166-5133</issn><issn>2166-515X</issn><isbn>1467328820</isbn><isbn>9781467328821</isbn><isbn>0769548385</isbn><isbn>9780769548388</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9jEtLAzEURuMLbGu3btzkD0zNzWOSLEuxrdDiQK24siTTOxBJZ0oyiv57BR_f5izO4SPkGtgEgNnbzXS6rGYTzoBPuD4hQ6ZLq6QRRp2SAYeyLBSo5zMyBFlqwY3h7PxfCHFJxjm_su8Z0MDNgLxUmJouHVxbI-0aWrnkYsRIN0eXMtK161P4KJ6w7rtE12-xD8cYateHrs00tHQVWnSJbrr4jpl27V-DdFFt8xW5aFzMOP7liGznd4-zZbF6WNzPpqsigFZ9oYSXhnml_V4zQBBcgyiFctJrgbaxFqTZS-2drznfa6lqK7i1TS3RQwNiRG5-fgMi7o4pHFz63JUCLGdKfAHAm1dU</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Jamroz, B.</creator><creator>Mullowney, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201207</creationdate><title>Performance of Parallel Sparse Matrix-Vector Multiplications in Linear Solves on Multiple GPUs</title><author>Jamroz, B. ; Mullowney, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-53b480b57bd701e132713635a4b73e9f99148d47babc22d745c93299fc4eb1f13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Approximation methods</topic><topic>Graphics processing unit</topic><topic>graphics processing units</topic><topic>linear algebra</topic><topic>Linear systems</topic><topic>Performance evaluation</topic><topic>Polynomials</topic><topic>preconditioner</topic><topic>Sparse matrices</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Jamroz, B.</creatorcontrib><creatorcontrib>Mullowney, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jamroz, B.</au><au>Mullowney, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Performance of Parallel Sparse Matrix-Vector Multiplications in Linear Solves on Multiple GPUs</atitle><btitle>2012 Symposium on Application Accelerators in High Performance Computing</btitle><stitle>saahpc</stitle><date>2012-07</date><risdate>2012</risdate><spage>149</spage><epage>152</epage><pages>149-152</pages><issn>2166-5133</issn><eissn>2166-515X</eissn><isbn>1467328820</isbn><isbn>9781467328821</isbn><eisbn>0769548385</eisbn><eisbn>9780769548388</eisbn><coden>IEEPAD</coden><abstract>Modern numerical simulations often require solving extremely large sparse linear systems. Solving these linear systems using Krylov iterative methods requires repeated sparse matrix-vector multiplications which can be the most computationally expensive part of the simulation. Since Graphics Processing Units (GPUs) provide a significant increase in floating point operations per second and memory bandwidth over conventional Central Processing Units (CPUs), performing sparse matrix-vector multiplications with these co-processors can decrease the amount of time required to solve a given linear system. In this paper, we investigate the performance of sparse matrix-vector multiplications across multiple GPUs. This is performed in the context of the solution of symmetric positive-definite linear systems using a conjugate-gradient iteration preconditioned with a least-squares polynomial preconditioner using the PETSc library.</abstract><pub>IEEE</pub><doi>10.1109/SAAHPC.2012.27</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2166-5133
ispartof 2012 Symposium on Application Accelerators in High Performance Computing, 2012, p.149-152
issn 2166-5133
2166-515X
language eng
recordid cdi_ieee_primary_6319205
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Approximation methods
Graphics processing unit
graphics processing units
linear algebra
Linear systems
Performance evaluation
Polynomials
preconditioner
Sparse matrices
Vectors
title Performance of Parallel Sparse Matrix-Vector Multiplications in Linear Solves on Multiple GPUs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A54%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Performance%20of%20Parallel%20Sparse%20Matrix-Vector%20Multiplications%20in%20Linear%20Solves%20on%20Multiple%20GPUs&rft.btitle=2012%20Symposium%20on%20Application%20Accelerators%20in%20High%20Performance%20Computing&rft.au=Jamroz,%20B.&rft.date=2012-07&rft.spage=149&rft.epage=152&rft.pages=149-152&rft.issn=2166-5133&rft.eissn=2166-515X&rft.isbn=1467328820&rft.isbn_list=9781467328821&rft.coden=IEEPAD&rft_id=info:doi/10.1109/SAAHPC.2012.27&rft.eisbn=0769548385&rft.eisbn_list=9780769548388&rft_dat=%3Cieee_6IE%3E6319205%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-53b480b57bd701e132713635a4b73e9f99148d47babc22d745c93299fc4eb1f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6319205&rfr_iscdi=true