Loading…
Estimation of posterior distributions with population Monte Carlo sampling and graphical modeling
An important step in applying graphical models to signal processing is the implementation of belief propagation. Belief propagation represents an efficient way of solving inference problems based on passing local messages. When we deal with continuous hidden variables, belief propagation requires so...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 264 |
container_issue | |
container_start_page | 261 |
container_title | |
container_volume | |
creator | Djuric, P. M. Tasdemir, C. |
description | An important step in applying graphical models to signal processing is the implementation of belief propagation. Belief propagation represents an efficient way of solving inference problems based on passing local messages. When we deal with continuous hidden variables, belief propagation requires solving integrals which usually do not have analytical solutions. In this paper we show how this can be accomplished on factor graphs using population Monte Carlo (PMC) sampling. We propose a scheme that enforces the same set of particles to be used by the different factors, which allows for easy fusion of messages while forming the belief of each variable. We present the proposed scheme with an application to target localization with signal strength measurements. |
doi_str_mv | 10.1109/SSP.2012.6319677 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6319677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6319677</ieee_id><sourcerecordid>6319677</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-4a767c7993af9a7920ba2536cad8e33839f0cf494eb0c75010e230ad14fe2ce73</originalsourceid><addsrcrecordid>eNo1kFtLw0AUhNcbWGvfBV_2D6Se3ZPs5VFKvUBFofpcTpNNu5ImYXeL-O9NaX0amG8YmGHsTsBUCLAPy-XHVIKQU4XCKq3P2I3IlUYQRuhzNpLKYoZFIS7YxGrzz2R-OTDUmIEBvGaTGL8BQCgj0cgRo3lMfkfJdy3vat53Mbngu8ArH1Pw6_2BRP7j03aA_b45Rt-6Njk-o9B0PNKub3y74dRWfBOo3_qSGr7rKnewb9lVTU10k5OO2dfT_HP2ki3en19nj4vMC12kLCetdKmtRaotaSthTbJAVVJlHKJBW0NZ5zZ3ayh1AQKcRKBK5LWTpdM4ZvfHXu-cW_VhWBV-V6e38A8qFVs-</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Estimation of posterior distributions with population Monte Carlo sampling and graphical modeling</title><source>IEEE Xplore All Conference Series</source><creator>Djuric, P. M. ; Tasdemir, C.</creator><creatorcontrib>Djuric, P. M. ; Tasdemir, C.</creatorcontrib><description>An important step in applying graphical models to signal processing is the implementation of belief propagation. Belief propagation represents an efficient way of solving inference problems based on passing local messages. When we deal with continuous hidden variables, belief propagation requires solving integrals which usually do not have analytical solutions. In this paper we show how this can be accomplished on factor graphs using population Monte Carlo (PMC) sampling. We propose a scheme that enforces the same set of particles to be used by the different factors, which allows for easy fusion of messages while forming the belief of each variable. We present the proposed scheme with an application to target localization with signal strength measurements.</description><identifier>ISSN: 2373-0803</identifier><identifier>ISBN: 9781467301824</identifier><identifier>ISBN: 1467301825</identifier><identifier>EISSN: 2693-3551</identifier><identifier>EISBN: 1467301817</identifier><identifier>EISBN: 9781467301817</identifier><identifier>DOI: 10.1109/SSP.2012.6319677</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation methods ; Atmospheric measurements ; Belief propagation ; graphical modeling ; Monte Carlo methods ; non-parametric belief propagation ; Particle measurements ; Population Monte Carlo ; Sociology ; target localization ; Vectors</subject><ispartof>2012 IEEE Statistical Signal Processing Workshop (SSP), 2012, p.261-264</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6319677$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6319677$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Djuric, P. M.</creatorcontrib><creatorcontrib>Tasdemir, C.</creatorcontrib><title>Estimation of posterior distributions with population Monte Carlo sampling and graphical modeling</title><title>2012 IEEE Statistical Signal Processing Workshop (SSP)</title><addtitle>SSP</addtitle><description>An important step in applying graphical models to signal processing is the implementation of belief propagation. Belief propagation represents an efficient way of solving inference problems based on passing local messages. When we deal with continuous hidden variables, belief propagation requires solving integrals which usually do not have analytical solutions. In this paper we show how this can be accomplished on factor graphs using population Monte Carlo (PMC) sampling. We propose a scheme that enforces the same set of particles to be used by the different factors, which allows for easy fusion of messages while forming the belief of each variable. We present the proposed scheme with an application to target localization with signal strength measurements.</description><subject>Approximation methods</subject><subject>Atmospheric measurements</subject><subject>Belief propagation</subject><subject>graphical modeling</subject><subject>Monte Carlo methods</subject><subject>non-parametric belief propagation</subject><subject>Particle measurements</subject><subject>Population Monte Carlo</subject><subject>Sociology</subject><subject>target localization</subject><subject>Vectors</subject><issn>2373-0803</issn><issn>2693-3551</issn><isbn>9781467301824</isbn><isbn>1467301825</isbn><isbn>1467301817</isbn><isbn>9781467301817</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kFtLw0AUhNcbWGvfBV_2D6Se3ZPs5VFKvUBFofpcTpNNu5ImYXeL-O9NaX0amG8YmGHsTsBUCLAPy-XHVIKQU4XCKq3P2I3IlUYQRuhzNpLKYoZFIS7YxGrzz2R-OTDUmIEBvGaTGL8BQCgj0cgRo3lMfkfJdy3vat53Mbngu8ArH1Pw6_2BRP7j03aA_b45Rt-6Njk-o9B0PNKub3y74dRWfBOo3_qSGr7rKnewb9lVTU10k5OO2dfT_HP2ki3en19nj4vMC12kLCetdKmtRaotaSthTbJAVVJlHKJBW0NZ5zZ3ayh1AQKcRKBK5LWTpdM4ZvfHXu-cW_VhWBV-V6e38A8qFVs-</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Djuric, P. M.</creator><creator>Tasdemir, C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201208</creationdate><title>Estimation of posterior distributions with population Monte Carlo sampling and graphical modeling</title><author>Djuric, P. M. ; Tasdemir, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-4a767c7993af9a7920ba2536cad8e33839f0cf494eb0c75010e230ad14fe2ce73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Approximation methods</topic><topic>Atmospheric measurements</topic><topic>Belief propagation</topic><topic>graphical modeling</topic><topic>Monte Carlo methods</topic><topic>non-parametric belief propagation</topic><topic>Particle measurements</topic><topic>Population Monte Carlo</topic><topic>Sociology</topic><topic>target localization</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Djuric, P. M.</creatorcontrib><creatorcontrib>Tasdemir, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Djuric, P. M.</au><au>Tasdemir, C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Estimation of posterior distributions with population Monte Carlo sampling and graphical modeling</atitle><btitle>2012 IEEE Statistical Signal Processing Workshop (SSP)</btitle><stitle>SSP</stitle><date>2012-08</date><risdate>2012</risdate><spage>261</spage><epage>264</epage><pages>261-264</pages><issn>2373-0803</issn><eissn>2693-3551</eissn><isbn>9781467301824</isbn><isbn>1467301825</isbn><eisbn>1467301817</eisbn><eisbn>9781467301817</eisbn><abstract>An important step in applying graphical models to signal processing is the implementation of belief propagation. Belief propagation represents an efficient way of solving inference problems based on passing local messages. When we deal with continuous hidden variables, belief propagation requires solving integrals which usually do not have analytical solutions. In this paper we show how this can be accomplished on factor graphs using population Monte Carlo (PMC) sampling. We propose a scheme that enforces the same set of particles to be used by the different factors, which allows for easy fusion of messages while forming the belief of each variable. We present the proposed scheme with an application to target localization with signal strength measurements.</abstract><pub>IEEE</pub><doi>10.1109/SSP.2012.6319677</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2373-0803 |
ispartof | 2012 IEEE Statistical Signal Processing Workshop (SSP), 2012, p.261-264 |
issn | 2373-0803 2693-3551 |
language | eng |
recordid | cdi_ieee_primary_6319677 |
source | IEEE Xplore All Conference Series |
subjects | Approximation methods Atmospheric measurements Belief propagation graphical modeling Monte Carlo methods non-parametric belief propagation Particle measurements Population Monte Carlo Sociology target localization Vectors |
title | Estimation of posterior distributions with population Monte Carlo sampling and graphical modeling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A38%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Estimation%20of%20posterior%20distributions%20with%20population%20Monte%20Carlo%20sampling%20and%20graphical%20modeling&rft.btitle=2012%20IEEE%20Statistical%20Signal%20Processing%20Workshop%20(SSP)&rft.au=Djuric,%20P.%20M.&rft.date=2012-08&rft.spage=261&rft.epage=264&rft.pages=261-264&rft.issn=2373-0803&rft.eissn=2693-3551&rft.isbn=9781467301824&rft.isbn_list=1467301825&rft_id=info:doi/10.1109/SSP.2012.6319677&rft.eisbn=1467301817&rft.eisbn_list=9781467301817&rft_dat=%3Cieee_CHZPO%3E6319677%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-4a767c7993af9a7920ba2536cad8e33839f0cf494eb0c75010e230ad14fe2ce73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6319677&rfr_iscdi=true |