Loading…

Estimation of posterior distributions with population Monte Carlo sampling and graphical modeling

An important step in applying graphical models to signal processing is the implementation of belief propagation. Belief propagation represents an efficient way of solving inference problems based on passing local messages. When we deal with continuous hidden variables, belief propagation requires so...

Full description

Saved in:
Bibliographic Details
Main Authors: Djuric, P. M., Tasdemir, C.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 264
container_issue
container_start_page 261
container_title
container_volume
creator Djuric, P. M.
Tasdemir, C.
description An important step in applying graphical models to signal processing is the implementation of belief propagation. Belief propagation represents an efficient way of solving inference problems based on passing local messages. When we deal with continuous hidden variables, belief propagation requires solving integrals which usually do not have analytical solutions. In this paper we show how this can be accomplished on factor graphs using population Monte Carlo (PMC) sampling. We propose a scheme that enforces the same set of particles to be used by the different factors, which allows for easy fusion of messages while forming the belief of each variable. We present the proposed scheme with an application to target localization with signal strength measurements.
doi_str_mv 10.1109/SSP.2012.6319677
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6319677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6319677</ieee_id><sourcerecordid>6319677</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-4a767c7993af9a7920ba2536cad8e33839f0cf494eb0c75010e230ad14fe2ce73</originalsourceid><addsrcrecordid>eNo1kFtLw0AUhNcbWGvfBV_2D6Se3ZPs5VFKvUBFofpcTpNNu5ImYXeL-O9NaX0amG8YmGHsTsBUCLAPy-XHVIKQU4XCKq3P2I3IlUYQRuhzNpLKYoZFIS7YxGrzz2R-OTDUmIEBvGaTGL8BQCgj0cgRo3lMfkfJdy3vat53Mbngu8ArH1Pw6_2BRP7j03aA_b45Rt-6Njk-o9B0PNKub3y74dRWfBOo3_qSGr7rKnewb9lVTU10k5OO2dfT_HP2ki3en19nj4vMC12kLCetdKmtRaotaSthTbJAVVJlHKJBW0NZ5zZ3ayh1AQKcRKBK5LWTpdM4ZvfHXu-cW_VhWBV-V6e38A8qFVs-</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Estimation of posterior distributions with population Monte Carlo sampling and graphical modeling</title><source>IEEE Xplore All Conference Series</source><creator>Djuric, P. M. ; Tasdemir, C.</creator><creatorcontrib>Djuric, P. M. ; Tasdemir, C.</creatorcontrib><description>An important step in applying graphical models to signal processing is the implementation of belief propagation. Belief propagation represents an efficient way of solving inference problems based on passing local messages. When we deal with continuous hidden variables, belief propagation requires solving integrals which usually do not have analytical solutions. In this paper we show how this can be accomplished on factor graphs using population Monte Carlo (PMC) sampling. We propose a scheme that enforces the same set of particles to be used by the different factors, which allows for easy fusion of messages while forming the belief of each variable. We present the proposed scheme with an application to target localization with signal strength measurements.</description><identifier>ISSN: 2373-0803</identifier><identifier>ISBN: 9781467301824</identifier><identifier>ISBN: 1467301825</identifier><identifier>EISSN: 2693-3551</identifier><identifier>EISBN: 1467301817</identifier><identifier>EISBN: 9781467301817</identifier><identifier>DOI: 10.1109/SSP.2012.6319677</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation methods ; Atmospheric measurements ; Belief propagation ; graphical modeling ; Monte Carlo methods ; non-parametric belief propagation ; Particle measurements ; Population Monte Carlo ; Sociology ; target localization ; Vectors</subject><ispartof>2012 IEEE Statistical Signal Processing Workshop (SSP), 2012, p.261-264</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6319677$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6319677$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Djuric, P. M.</creatorcontrib><creatorcontrib>Tasdemir, C.</creatorcontrib><title>Estimation of posterior distributions with population Monte Carlo sampling and graphical modeling</title><title>2012 IEEE Statistical Signal Processing Workshop (SSP)</title><addtitle>SSP</addtitle><description>An important step in applying graphical models to signal processing is the implementation of belief propagation. Belief propagation represents an efficient way of solving inference problems based on passing local messages. When we deal with continuous hidden variables, belief propagation requires solving integrals which usually do not have analytical solutions. In this paper we show how this can be accomplished on factor graphs using population Monte Carlo (PMC) sampling. We propose a scheme that enforces the same set of particles to be used by the different factors, which allows for easy fusion of messages while forming the belief of each variable. We present the proposed scheme with an application to target localization with signal strength measurements.</description><subject>Approximation methods</subject><subject>Atmospheric measurements</subject><subject>Belief propagation</subject><subject>graphical modeling</subject><subject>Monte Carlo methods</subject><subject>non-parametric belief propagation</subject><subject>Particle measurements</subject><subject>Population Monte Carlo</subject><subject>Sociology</subject><subject>target localization</subject><subject>Vectors</subject><issn>2373-0803</issn><issn>2693-3551</issn><isbn>9781467301824</isbn><isbn>1467301825</isbn><isbn>1467301817</isbn><isbn>9781467301817</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kFtLw0AUhNcbWGvfBV_2D6Se3ZPs5VFKvUBFofpcTpNNu5ImYXeL-O9NaX0amG8YmGHsTsBUCLAPy-XHVIKQU4XCKq3P2I3IlUYQRuhzNpLKYoZFIS7YxGrzz2R-OTDUmIEBvGaTGL8BQCgj0cgRo3lMfkfJdy3vat53Mbngu8ArH1Pw6_2BRP7j03aA_b45Rt-6Njk-o9B0PNKub3y74dRWfBOo3_qSGr7rKnewb9lVTU10k5OO2dfT_HP2ki3en19nj4vMC12kLCetdKmtRaotaSthTbJAVVJlHKJBW0NZ5zZ3ayh1AQKcRKBK5LWTpdM4ZvfHXu-cW_VhWBV-V6e38A8qFVs-</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Djuric, P. M.</creator><creator>Tasdemir, C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201208</creationdate><title>Estimation of posterior distributions with population Monte Carlo sampling and graphical modeling</title><author>Djuric, P. M. ; Tasdemir, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-4a767c7993af9a7920ba2536cad8e33839f0cf494eb0c75010e230ad14fe2ce73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Approximation methods</topic><topic>Atmospheric measurements</topic><topic>Belief propagation</topic><topic>graphical modeling</topic><topic>Monte Carlo methods</topic><topic>non-parametric belief propagation</topic><topic>Particle measurements</topic><topic>Population Monte Carlo</topic><topic>Sociology</topic><topic>target localization</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Djuric, P. M.</creatorcontrib><creatorcontrib>Tasdemir, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Djuric, P. M.</au><au>Tasdemir, C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Estimation of posterior distributions with population Monte Carlo sampling and graphical modeling</atitle><btitle>2012 IEEE Statistical Signal Processing Workshop (SSP)</btitle><stitle>SSP</stitle><date>2012-08</date><risdate>2012</risdate><spage>261</spage><epage>264</epage><pages>261-264</pages><issn>2373-0803</issn><eissn>2693-3551</eissn><isbn>9781467301824</isbn><isbn>1467301825</isbn><eisbn>1467301817</eisbn><eisbn>9781467301817</eisbn><abstract>An important step in applying graphical models to signal processing is the implementation of belief propagation. Belief propagation represents an efficient way of solving inference problems based on passing local messages. When we deal with continuous hidden variables, belief propagation requires solving integrals which usually do not have analytical solutions. In this paper we show how this can be accomplished on factor graphs using population Monte Carlo (PMC) sampling. We propose a scheme that enforces the same set of particles to be used by the different factors, which allows for easy fusion of messages while forming the belief of each variable. We present the proposed scheme with an application to target localization with signal strength measurements.</abstract><pub>IEEE</pub><doi>10.1109/SSP.2012.6319677</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2373-0803
ispartof 2012 IEEE Statistical Signal Processing Workshop (SSP), 2012, p.261-264
issn 2373-0803
2693-3551
language eng
recordid cdi_ieee_primary_6319677
source IEEE Xplore All Conference Series
subjects Approximation methods
Atmospheric measurements
Belief propagation
graphical modeling
Monte Carlo methods
non-parametric belief propagation
Particle measurements
Population Monte Carlo
Sociology
target localization
Vectors
title Estimation of posterior distributions with population Monte Carlo sampling and graphical modeling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A38%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Estimation%20of%20posterior%20distributions%20with%20population%20Monte%20Carlo%20sampling%20and%20graphical%20modeling&rft.btitle=2012%20IEEE%20Statistical%20Signal%20Processing%20Workshop%20(SSP)&rft.au=Djuric,%20P.%20M.&rft.date=2012-08&rft.spage=261&rft.epage=264&rft.pages=261-264&rft.issn=2373-0803&rft.eissn=2693-3551&rft.isbn=9781467301824&rft.isbn_list=1467301825&rft_id=info:doi/10.1109/SSP.2012.6319677&rft.eisbn=1467301817&rft.eisbn_list=9781467301817&rft_dat=%3Cieee_CHZPO%3E6319677%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-4a767c7993af9a7920ba2536cad8e33839f0cf494eb0c75010e230ad14fe2ce73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6319677&rfr_iscdi=true