Loading…

Extreme Learning Machine for two category data classification

This paper experiments a recently developed, simple and efficient learning algorithm for Single hidden Layer Feed forward Neural networks (SLFNs) called Extreme Learning Machine (ELM) for two category data classification problems evaluated on the Stat log-Heart dataset. ELM randomly chooses hidden n...

Full description

Saved in:
Bibliographic Details
Main Authors: Subbulakshmi, C. V., Deepa, S. N., Malathi, N.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 461
container_issue
container_start_page 458
container_title
container_volume
creator Subbulakshmi, C. V.
Deepa, S. N.
Malathi, N.
description This paper experiments a recently developed, simple and efficient learning algorithm for Single hidden Layer Feed forward Neural networks (SLFNs) called Extreme Learning Machine (ELM) for two category data classification problems evaluated on the Stat log-Heart dataset. ELM randomly chooses hidden nodes and analytically determines the output weights of SLFNs. A detailed analysis of different activation functions with varying number of hidden neurons is carried out using Stat log-Heart dataset. The evaluation results indicate that ELM produces better classification accuracy with reduced training time. Its performance has been compared with other methods such as the Naïve Bayes, AWAIS, C4.5, and Logistic Regression algorithms sited in the previous literature.
doi_str_mv 10.1109/ICACCCT.2012.6320822
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6320822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6320822</ieee_id><sourcerecordid>6320822</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-947620593ea32815901369406e5b96e9d55d6b9de9b5601fc5df7898914ed4b33</originalsourceid><addsrcrecordid>eNpFj81KxEAQhEdEUNd9Aj3MCyR2z1_SBw8S1h-IeMl9mWQ668huIpOA7tsbcMG6FF8diioh7hByRKD71-qxqqomV4Aqd1pBqdSZuEbjigVMgef_YO2lWE_TJywqsQAyV-Jh8zMnPrCs2achDjv55ruPOLDsxyTn71F2fubdmI4y-NnLbu-nKfZxSeM43IiL3u8nXp98JZqnTVO9ZPX787KsziLBnJEpnAJLmr1WJVoC1I4MOLYtOaZgbXAtBabWOsC-s6EvSioJDQfTar0St3-1kZm3XykefDpuT2_1Ly8vSCI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Extreme Learning Machine for two category data classification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Subbulakshmi, C. V. ; Deepa, S. N. ; Malathi, N.</creator><creatorcontrib>Subbulakshmi, C. V. ; Deepa, S. N. ; Malathi, N.</creatorcontrib><description>This paper experiments a recently developed, simple and efficient learning algorithm for Single hidden Layer Feed forward Neural networks (SLFNs) called Extreme Learning Machine (ELM) for two category data classification problems evaluated on the Stat log-Heart dataset. ELM randomly chooses hidden nodes and analytically determines the output weights of SLFNs. A detailed analysis of different activation functions with varying number of hidden neurons is carried out using Stat log-Heart dataset. The evaluation results indicate that ELM produces better classification accuracy with reduced training time. Its performance has been compared with other methods such as the Naïve Bayes, AWAIS, C4.5, and Logistic Regression algorithms sited in the previous literature.</description><identifier>ISBN: 1467320455</identifier><identifier>ISBN: 9781467320450</identifier><identifier>EISBN: 1467320471</identifier><identifier>EISBN: 9781467320474</identifier><identifier>EISBN: 9781467320481</identifier><identifier>EISBN: 146732048X</identifier><identifier>DOI: 10.1109/ICACCCT.2012.6320822</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Classification ; Extreme Learning Machine (ELM) ; Heart ; Mercury (metals) ; Single hidden Layer Feed forward Neural network (SLFN)</subject><ispartof>2012 IEEE International Conference on Advanced Communication Control and Computing Technologies (ICACCCT), 2012, p.458-461</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6320822$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6320822$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Subbulakshmi, C. V.</creatorcontrib><creatorcontrib>Deepa, S. N.</creatorcontrib><creatorcontrib>Malathi, N.</creatorcontrib><title>Extreme Learning Machine for two category data classification</title><title>2012 IEEE International Conference on Advanced Communication Control and Computing Technologies (ICACCCT)</title><addtitle>ICACCCT</addtitle><description>This paper experiments a recently developed, simple and efficient learning algorithm for Single hidden Layer Feed forward Neural networks (SLFNs) called Extreme Learning Machine (ELM) for two category data classification problems evaluated on the Stat log-Heart dataset. ELM randomly chooses hidden nodes and analytically determines the output weights of SLFNs. A detailed analysis of different activation functions with varying number of hidden neurons is carried out using Stat log-Heart dataset. The evaluation results indicate that ELM produces better classification accuracy with reduced training time. Its performance has been compared with other methods such as the Naïve Bayes, AWAIS, C4.5, and Logistic Regression algorithms sited in the previous literature.</description><subject>Accuracy</subject><subject>Classification</subject><subject>Extreme Learning Machine (ELM)</subject><subject>Heart</subject><subject>Mercury (metals)</subject><subject>Single hidden Layer Feed forward Neural network (SLFN)</subject><isbn>1467320455</isbn><isbn>9781467320450</isbn><isbn>1467320471</isbn><isbn>9781467320474</isbn><isbn>9781467320481</isbn><isbn>146732048X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFj81KxEAQhEdEUNd9Aj3MCyR2z1_SBw8S1h-IeMl9mWQ668huIpOA7tsbcMG6FF8diioh7hByRKD71-qxqqomV4Aqd1pBqdSZuEbjigVMgef_YO2lWE_TJywqsQAyV-Jh8zMnPrCs2achDjv55ruPOLDsxyTn71F2fubdmI4y-NnLbu-nKfZxSeM43IiL3u8nXp98JZqnTVO9ZPX787KsziLBnJEpnAJLmr1WJVoC1I4MOLYtOaZgbXAtBabWOsC-s6EvSioJDQfTar0St3-1kZm3XykefDpuT2_1Ly8vSCI</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Subbulakshmi, C. V.</creator><creator>Deepa, S. N.</creator><creator>Malathi, N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201208</creationdate><title>Extreme Learning Machine for two category data classification</title><author>Subbulakshmi, C. V. ; Deepa, S. N. ; Malathi, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-947620593ea32815901369406e5b96e9d55d6b9de9b5601fc5df7898914ed4b33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Classification</topic><topic>Extreme Learning Machine (ELM)</topic><topic>Heart</topic><topic>Mercury (metals)</topic><topic>Single hidden Layer Feed forward Neural network (SLFN)</topic><toplevel>online_resources</toplevel><creatorcontrib>Subbulakshmi, C. V.</creatorcontrib><creatorcontrib>Deepa, S. N.</creatorcontrib><creatorcontrib>Malathi, N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Subbulakshmi, C. V.</au><au>Deepa, S. N.</au><au>Malathi, N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Extreme Learning Machine for two category data classification</atitle><btitle>2012 IEEE International Conference on Advanced Communication Control and Computing Technologies (ICACCCT)</btitle><stitle>ICACCCT</stitle><date>2012-08</date><risdate>2012</risdate><spage>458</spage><epage>461</epage><pages>458-461</pages><isbn>1467320455</isbn><isbn>9781467320450</isbn><eisbn>1467320471</eisbn><eisbn>9781467320474</eisbn><eisbn>9781467320481</eisbn><eisbn>146732048X</eisbn><abstract>This paper experiments a recently developed, simple and efficient learning algorithm for Single hidden Layer Feed forward Neural networks (SLFNs) called Extreme Learning Machine (ELM) for two category data classification problems evaluated on the Stat log-Heart dataset. ELM randomly chooses hidden nodes and analytically determines the output weights of SLFNs. A detailed analysis of different activation functions with varying number of hidden neurons is carried out using Stat log-Heart dataset. The evaluation results indicate that ELM produces better classification accuracy with reduced training time. Its performance has been compared with other methods such as the Naïve Bayes, AWAIS, C4.5, and Logistic Regression algorithms sited in the previous literature.</abstract><pub>IEEE</pub><doi>10.1109/ICACCCT.2012.6320822</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467320455
ispartof 2012 IEEE International Conference on Advanced Communication Control and Computing Technologies (ICACCCT), 2012, p.458-461
issn
language eng
recordid cdi_ieee_primary_6320822
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Classification
Extreme Learning Machine (ELM)
Heart
Mercury (metals)
Single hidden Layer Feed forward Neural network (SLFN)
title Extreme Learning Machine for two category data classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A37%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Extreme%20Learning%20Machine%20for%20two%20category%20data%20classification&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Advanced%20Communication%20Control%20and%20Computing%20Technologies%20(ICACCCT)&rft.au=Subbulakshmi,%20C.%20V.&rft.date=2012-08&rft.spage=458&rft.epage=461&rft.pages=458-461&rft.isbn=1467320455&rft.isbn_list=9781467320450&rft_id=info:doi/10.1109/ICACCCT.2012.6320822&rft.eisbn=1467320471&rft.eisbn_list=9781467320474&rft.eisbn_list=9781467320481&rft.eisbn_list=146732048X&rft_dat=%3Cieee_6IE%3E6320822%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-947620593ea32815901369406e5b96e9d55d6b9de9b5601fc5df7898914ed4b33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6320822&rfr_iscdi=true