Loading…
Characterization of surface heat convection of bilayer graphene
This paper studies the surface heat convection of a bilayer graphene and the possibility of using graphene wires as a flow and temperature sensor. A bilayer graphene wire was designed and fabricated, with the length of around 53 μm and the average width of around 0.5 μm. Prior to testing, the device...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper studies the surface heat convection of a bilayer graphene and the possibility of using graphene wires as a flow and temperature sensor. A bilayer graphene wire was designed and fabricated, with the length of around 53 μm and the average width of around 0.5 μm. Prior to testing, the device was packaged with a microfluidic chamber and capillary tubes to minimize environmental interference. Thermal inertia of the graphene wire was studied at a temperature of 70 °C and the flow sensing behavior was characterized with normalized resistance changes for different values of flow rates. Our preliminary results demonstrate a negative temperature coefficient of the bilayer graphene and a flow sensitivity of about 0.44 L/min and a resolution of about 0.07 L/min. This technique provides a strong candidate for flow sensing in the nano and micro industrial applications with large temperature detection range, reliability and low cost. |
---|---|
ISSN: | 1944-9399 1944-9380 |
DOI: | 10.1109/NANO.2012.6322100 |