Loading…
Characterization of surface heat convection of bilayer graphene
This paper studies the surface heat convection of a bilayer graphene and the possibility of using graphene wires as a flow and temperature sensor. A bilayer graphene wire was designed and fabricated, with the length of around 53 μm and the average width of around 0.5 μm. Prior to testing, the device...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Al-Mumen, H. Fubo Rao Lixin Dong Wen Li |
description | This paper studies the surface heat convection of a bilayer graphene and the possibility of using graphene wires as a flow and temperature sensor. A bilayer graphene wire was designed and fabricated, with the length of around 53 μm and the average width of around 0.5 μm. Prior to testing, the device was packaged with a microfluidic chamber and capillary tubes to minimize environmental interference. Thermal inertia of the graphene wire was studied at a temperature of 70 °C and the flow sensing behavior was characterized with normalized resistance changes for different values of flow rates. Our preliminary results demonstrate a negative temperature coefficient of the bilayer graphene and a flow sensitivity of about 0.44 L/min and a resolution of about 0.07 L/min. This technique provides a strong candidate for flow sensing in the nano and micro industrial applications with large temperature detection range, reliability and low cost. |
doi_str_mv | 10.1109/NANO.2012.6322100 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6322100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6322100</ieee_id><sourcerecordid>6322100</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-41c2bef4fd54808ab133d532dac4d0295df771016d1b0bbe6fed3b8da2c311473</originalsourceid><addsrcrecordid>eNo90MtOwzAUBFDzkiglH4DY5AcS7rWdxF6hKioPqWo33Vd-XBOj0lROQCpfDxIts5nFkWYxjN0hlIigH5az5arkgLysBecIcMZuUNaN4Kg1nLMJaikLLRRcsEw36mRKXP6b1tcsG4Z3-I3iKBEm7LHtTDJupBS_zRj7Xd6HfPhMwTjKOzJj7vrdF7kT2bg1B0r5WzL7jnZ0y66C2Q6UHXvK1k_zdftSLFbPr-1sUUQNYyHRcUtBBl9JBcpYFMJXgnvjpAeuKx-aBgFrjxaspTqQF1Z5w51AlI2Ysvu_2UhEm32KHyYdNscrxA-yEk4t</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Characterization of surface heat convection of bilayer graphene</title><source>IEEE Xplore All Conference Series</source><creator>Al-Mumen, H. ; Fubo Rao ; Lixin Dong ; Wen Li</creator><creatorcontrib>Al-Mumen, H. ; Fubo Rao ; Lixin Dong ; Wen Li</creatorcontrib><description>This paper studies the surface heat convection of a bilayer graphene and the possibility of using graphene wires as a flow and temperature sensor. A bilayer graphene wire was designed and fabricated, with the length of around 53 μm and the average width of around 0.5 μm. Prior to testing, the device was packaged with a microfluidic chamber and capillary tubes to minimize environmental interference. Thermal inertia of the graphene wire was studied at a temperature of 70 °C and the flow sensing behavior was characterized with normalized resistance changes for different values of flow rates. Our preliminary results demonstrate a negative temperature coefficient of the bilayer graphene and a flow sensitivity of about 0.44 L/min and a resolution of about 0.07 L/min. This technique provides a strong candidate for flow sensing in the nano and micro industrial applications with large temperature detection range, reliability and low cost.</description><identifier>ISSN: 1944-9399</identifier><identifier>ISBN: 9781467321983</identifier><identifier>ISBN: 1467321982</identifier><identifier>EISSN: 1944-9380</identifier><identifier>EISBN: 1467321990</identifier><identifier>EISBN: 1467322008</identifier><identifier>EISBN: 9781467321990</identifier><identifier>EISBN: 9781467322003</identifier><identifier>DOI: 10.1109/NANO.2012.6322100</identifier><language>eng</language><publisher>IEEE</publisher><subject>Atomic measurements ; Heating ; Silicon</subject><ispartof>2012 12th IEEE International Conference on Nanotechnology (IEEE-NANO), 2012, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6322100$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54533,54898,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6322100$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Al-Mumen, H.</creatorcontrib><creatorcontrib>Fubo Rao</creatorcontrib><creatorcontrib>Lixin Dong</creatorcontrib><creatorcontrib>Wen Li</creatorcontrib><title>Characterization of surface heat convection of bilayer graphene</title><title>2012 12th IEEE International Conference on Nanotechnology (IEEE-NANO)</title><addtitle>NANO</addtitle><description>This paper studies the surface heat convection of a bilayer graphene and the possibility of using graphene wires as a flow and temperature sensor. A bilayer graphene wire was designed and fabricated, with the length of around 53 μm and the average width of around 0.5 μm. Prior to testing, the device was packaged with a microfluidic chamber and capillary tubes to minimize environmental interference. Thermal inertia of the graphene wire was studied at a temperature of 70 °C and the flow sensing behavior was characterized with normalized resistance changes for different values of flow rates. Our preliminary results demonstrate a negative temperature coefficient of the bilayer graphene and a flow sensitivity of about 0.44 L/min and a resolution of about 0.07 L/min. This technique provides a strong candidate for flow sensing in the nano and micro industrial applications with large temperature detection range, reliability and low cost.</description><subject>Atomic measurements</subject><subject>Heating</subject><subject>Silicon</subject><issn>1944-9399</issn><issn>1944-9380</issn><isbn>9781467321983</isbn><isbn>1467321982</isbn><isbn>1467321990</isbn><isbn>1467322008</isbn><isbn>9781467321990</isbn><isbn>9781467322003</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo90MtOwzAUBFDzkiglH4DY5AcS7rWdxF6hKioPqWo33Vd-XBOj0lROQCpfDxIts5nFkWYxjN0hlIigH5az5arkgLysBecIcMZuUNaN4Kg1nLMJaikLLRRcsEw36mRKXP6b1tcsG4Z3-I3iKBEm7LHtTDJupBS_zRj7Xd6HfPhMwTjKOzJj7vrdF7kT2bg1B0r5WzL7jnZ0y66C2Q6UHXvK1k_zdftSLFbPr-1sUUQNYyHRcUtBBl9JBcpYFMJXgnvjpAeuKx-aBgFrjxaspTqQF1Z5w51AlI2Ysvu_2UhEm32KHyYdNscrxA-yEk4t</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Al-Mumen, H.</creator><creator>Fubo Rao</creator><creator>Lixin Dong</creator><creator>Wen Li</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201208</creationdate><title>Characterization of surface heat convection of bilayer graphene</title><author>Al-Mumen, H. ; Fubo Rao ; Lixin Dong ; Wen Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-41c2bef4fd54808ab133d532dac4d0295df771016d1b0bbe6fed3b8da2c311473</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Atomic measurements</topic><topic>Heating</topic><topic>Silicon</topic><toplevel>online_resources</toplevel><creatorcontrib>Al-Mumen, H.</creatorcontrib><creatorcontrib>Fubo Rao</creatorcontrib><creatorcontrib>Lixin Dong</creatorcontrib><creatorcontrib>Wen Li</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Al-Mumen, H.</au><au>Fubo Rao</au><au>Lixin Dong</au><au>Wen Li</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Characterization of surface heat convection of bilayer graphene</atitle><btitle>2012 12th IEEE International Conference on Nanotechnology (IEEE-NANO)</btitle><stitle>NANO</stitle><date>2012-08</date><risdate>2012</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1944-9399</issn><eissn>1944-9380</eissn><isbn>9781467321983</isbn><isbn>1467321982</isbn><eisbn>1467321990</eisbn><eisbn>1467322008</eisbn><eisbn>9781467321990</eisbn><eisbn>9781467322003</eisbn><abstract>This paper studies the surface heat convection of a bilayer graphene and the possibility of using graphene wires as a flow and temperature sensor. A bilayer graphene wire was designed and fabricated, with the length of around 53 μm and the average width of around 0.5 μm. Prior to testing, the device was packaged with a microfluidic chamber and capillary tubes to minimize environmental interference. Thermal inertia of the graphene wire was studied at a temperature of 70 °C and the flow sensing behavior was characterized with normalized resistance changes for different values of flow rates. Our preliminary results demonstrate a negative temperature coefficient of the bilayer graphene and a flow sensitivity of about 0.44 L/min and a resolution of about 0.07 L/min. This technique provides a strong candidate for flow sensing in the nano and micro industrial applications with large temperature detection range, reliability and low cost.</abstract><pub>IEEE</pub><doi>10.1109/NANO.2012.6322100</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1944-9399 |
ispartof | 2012 12th IEEE International Conference on Nanotechnology (IEEE-NANO), 2012, p.1-4 |
issn | 1944-9399 1944-9380 |
language | eng |
recordid | cdi_ieee_primary_6322100 |
source | IEEE Xplore All Conference Series |
subjects | Atomic measurements Heating Silicon |
title | Characterization of surface heat convection of bilayer graphene |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A20%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Characterization%20of%20surface%20heat%20convection%20of%20bilayer%20graphene&rft.btitle=2012%2012th%20IEEE%20International%20Conference%20on%20Nanotechnology%20(IEEE-NANO)&rft.au=Al-Mumen,%20H.&rft.date=2012-08&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1944-9399&rft.eissn=1944-9380&rft.isbn=9781467321983&rft.isbn_list=1467321982&rft_id=info:doi/10.1109/NANO.2012.6322100&rft.eisbn=1467321990&rft.eisbn_list=1467322008&rft.eisbn_list=9781467321990&rft.eisbn_list=9781467322003&rft_dat=%3Cieee_CHZPO%3E6322100%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-41c2bef4fd54808ab133d532dac4d0295df771016d1b0bbe6fed3b8da2c311473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6322100&rfr_iscdi=true |