Loading…

Characterization of surface heat convection of bilayer graphene

This paper studies the surface heat convection of a bilayer graphene and the possibility of using graphene wires as a flow and temperature sensor. A bilayer graphene wire was designed and fabricated, with the length of around 53 μm and the average width of around 0.5 μm. Prior to testing, the device...

Full description

Saved in:
Bibliographic Details
Main Authors: Al-Mumen, H., Fubo Rao, Lixin Dong, Wen Li
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Al-Mumen, H.
Fubo Rao
Lixin Dong
Wen Li
description This paper studies the surface heat convection of a bilayer graphene and the possibility of using graphene wires as a flow and temperature sensor. A bilayer graphene wire was designed and fabricated, with the length of around 53 μm and the average width of around 0.5 μm. Prior to testing, the device was packaged with a microfluidic chamber and capillary tubes to minimize environmental interference. Thermal inertia of the graphene wire was studied at a temperature of 70 °C and the flow sensing behavior was characterized with normalized resistance changes for different values of flow rates. Our preliminary results demonstrate a negative temperature coefficient of the bilayer graphene and a flow sensitivity of about 0.44 L/min and a resolution of about 0.07 L/min. This technique provides a strong candidate for flow sensing in the nano and micro industrial applications with large temperature detection range, reliability and low cost.
doi_str_mv 10.1109/NANO.2012.6322100
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6322100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6322100</ieee_id><sourcerecordid>6322100</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-41c2bef4fd54808ab133d532dac4d0295df771016d1b0bbe6fed3b8da2c311473</originalsourceid><addsrcrecordid>eNo90MtOwzAUBFDzkiglH4DY5AcS7rWdxF6hKioPqWo33Vd-XBOj0lROQCpfDxIts5nFkWYxjN0hlIigH5az5arkgLysBecIcMZuUNaN4Kg1nLMJaikLLRRcsEw36mRKXP6b1tcsG4Z3-I3iKBEm7LHtTDJupBS_zRj7Xd6HfPhMwTjKOzJj7vrdF7kT2bg1B0r5WzL7jnZ0y66C2Q6UHXvK1k_zdftSLFbPr-1sUUQNYyHRcUtBBl9JBcpYFMJXgnvjpAeuKx-aBgFrjxaspTqQF1Z5w51AlI2Ysvu_2UhEm32KHyYdNscrxA-yEk4t</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Characterization of surface heat convection of bilayer graphene</title><source>IEEE Xplore All Conference Series</source><creator>Al-Mumen, H. ; Fubo Rao ; Lixin Dong ; Wen Li</creator><creatorcontrib>Al-Mumen, H. ; Fubo Rao ; Lixin Dong ; Wen Li</creatorcontrib><description>This paper studies the surface heat convection of a bilayer graphene and the possibility of using graphene wires as a flow and temperature sensor. A bilayer graphene wire was designed and fabricated, with the length of around 53 μm and the average width of around 0.5 μm. Prior to testing, the device was packaged with a microfluidic chamber and capillary tubes to minimize environmental interference. Thermal inertia of the graphene wire was studied at a temperature of 70 °C and the flow sensing behavior was characterized with normalized resistance changes for different values of flow rates. Our preliminary results demonstrate a negative temperature coefficient of the bilayer graphene and a flow sensitivity of about 0.44 L/min and a resolution of about 0.07 L/min. This technique provides a strong candidate for flow sensing in the nano and micro industrial applications with large temperature detection range, reliability and low cost.</description><identifier>ISSN: 1944-9399</identifier><identifier>ISBN: 9781467321983</identifier><identifier>ISBN: 1467321982</identifier><identifier>EISSN: 1944-9380</identifier><identifier>EISBN: 1467321990</identifier><identifier>EISBN: 1467322008</identifier><identifier>EISBN: 9781467321990</identifier><identifier>EISBN: 9781467322003</identifier><identifier>DOI: 10.1109/NANO.2012.6322100</identifier><language>eng</language><publisher>IEEE</publisher><subject>Atomic measurements ; Heating ; Silicon</subject><ispartof>2012 12th IEEE International Conference on Nanotechnology (IEEE-NANO), 2012, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6322100$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54533,54898,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6322100$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Al-Mumen, H.</creatorcontrib><creatorcontrib>Fubo Rao</creatorcontrib><creatorcontrib>Lixin Dong</creatorcontrib><creatorcontrib>Wen Li</creatorcontrib><title>Characterization of surface heat convection of bilayer graphene</title><title>2012 12th IEEE International Conference on Nanotechnology (IEEE-NANO)</title><addtitle>NANO</addtitle><description>This paper studies the surface heat convection of a bilayer graphene and the possibility of using graphene wires as a flow and temperature sensor. A bilayer graphene wire was designed and fabricated, with the length of around 53 μm and the average width of around 0.5 μm. Prior to testing, the device was packaged with a microfluidic chamber and capillary tubes to minimize environmental interference. Thermal inertia of the graphene wire was studied at a temperature of 70 °C and the flow sensing behavior was characterized with normalized resistance changes for different values of flow rates. Our preliminary results demonstrate a negative temperature coefficient of the bilayer graphene and a flow sensitivity of about 0.44 L/min and a resolution of about 0.07 L/min. This technique provides a strong candidate for flow sensing in the nano and micro industrial applications with large temperature detection range, reliability and low cost.</description><subject>Atomic measurements</subject><subject>Heating</subject><subject>Silicon</subject><issn>1944-9399</issn><issn>1944-9380</issn><isbn>9781467321983</isbn><isbn>1467321982</isbn><isbn>1467321990</isbn><isbn>1467322008</isbn><isbn>9781467321990</isbn><isbn>9781467322003</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo90MtOwzAUBFDzkiglH4DY5AcS7rWdxF6hKioPqWo33Vd-XBOj0lROQCpfDxIts5nFkWYxjN0hlIigH5az5arkgLysBecIcMZuUNaN4Kg1nLMJaikLLRRcsEw36mRKXP6b1tcsG4Z3-I3iKBEm7LHtTDJupBS_zRj7Xd6HfPhMwTjKOzJj7vrdF7kT2bg1B0r5WzL7jnZ0y66C2Q6UHXvK1k_zdftSLFbPr-1sUUQNYyHRcUtBBl9JBcpYFMJXgnvjpAeuKx-aBgFrjxaspTqQF1Z5w51AlI2Ysvu_2UhEm32KHyYdNscrxA-yEk4t</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Al-Mumen, H.</creator><creator>Fubo Rao</creator><creator>Lixin Dong</creator><creator>Wen Li</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201208</creationdate><title>Characterization of surface heat convection of bilayer graphene</title><author>Al-Mumen, H. ; Fubo Rao ; Lixin Dong ; Wen Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-41c2bef4fd54808ab133d532dac4d0295df771016d1b0bbe6fed3b8da2c311473</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Atomic measurements</topic><topic>Heating</topic><topic>Silicon</topic><toplevel>online_resources</toplevel><creatorcontrib>Al-Mumen, H.</creatorcontrib><creatorcontrib>Fubo Rao</creatorcontrib><creatorcontrib>Lixin Dong</creatorcontrib><creatorcontrib>Wen Li</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Al-Mumen, H.</au><au>Fubo Rao</au><au>Lixin Dong</au><au>Wen Li</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Characterization of surface heat convection of bilayer graphene</atitle><btitle>2012 12th IEEE International Conference on Nanotechnology (IEEE-NANO)</btitle><stitle>NANO</stitle><date>2012-08</date><risdate>2012</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1944-9399</issn><eissn>1944-9380</eissn><isbn>9781467321983</isbn><isbn>1467321982</isbn><eisbn>1467321990</eisbn><eisbn>1467322008</eisbn><eisbn>9781467321990</eisbn><eisbn>9781467322003</eisbn><abstract>This paper studies the surface heat convection of a bilayer graphene and the possibility of using graphene wires as a flow and temperature sensor. A bilayer graphene wire was designed and fabricated, with the length of around 53 μm and the average width of around 0.5 μm. Prior to testing, the device was packaged with a microfluidic chamber and capillary tubes to minimize environmental interference. Thermal inertia of the graphene wire was studied at a temperature of 70 °C and the flow sensing behavior was characterized with normalized resistance changes for different values of flow rates. Our preliminary results demonstrate a negative temperature coefficient of the bilayer graphene and a flow sensitivity of about 0.44 L/min and a resolution of about 0.07 L/min. This technique provides a strong candidate for flow sensing in the nano and micro industrial applications with large temperature detection range, reliability and low cost.</abstract><pub>IEEE</pub><doi>10.1109/NANO.2012.6322100</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1944-9399
ispartof 2012 12th IEEE International Conference on Nanotechnology (IEEE-NANO), 2012, p.1-4
issn 1944-9399
1944-9380
language eng
recordid cdi_ieee_primary_6322100
source IEEE Xplore All Conference Series
subjects Atomic measurements
Heating
Silicon
title Characterization of surface heat convection of bilayer graphene
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A20%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Characterization%20of%20surface%20heat%20convection%20of%20bilayer%20graphene&rft.btitle=2012%2012th%20IEEE%20International%20Conference%20on%20Nanotechnology%20(IEEE-NANO)&rft.au=Al-Mumen,%20H.&rft.date=2012-08&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1944-9399&rft.eissn=1944-9380&rft.isbn=9781467321983&rft.isbn_list=1467321982&rft_id=info:doi/10.1109/NANO.2012.6322100&rft.eisbn=1467321990&rft.eisbn_list=1467322008&rft.eisbn_list=9781467321990&rft.eisbn_list=9781467322003&rft_dat=%3Cieee_CHZPO%3E6322100%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-41c2bef4fd54808ab133d532dac4d0295df771016d1b0bbe6fed3b8da2c311473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6322100&rfr_iscdi=true