Loading…
Validation of the automatic identification of eyes with diabetic retinopathy by OCT
Optical coherence tomography (OCT) is becoming one of the most important imaging modalities in ophthalmology due to its noninvasiveness and resolution. Besides allowing the visualization the human retina structure in detail, it was recently proposed that OCT embeds functional information. Specifical...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Santos, T. Ribeiro, L. Lobo, C. Bernardes, R. Serranho, P. |
description | Optical coherence tomography (OCT) is becoming one of the most important imaging modalities in ophthalmology due to its noninvasiveness and resolution. Besides allowing the visualization the human retina structure in detail, it was recently proposed that OCT embeds functional information. Specifically, it was proposed that blood-retinal barrier status information is present within OCT data acquired from the human retina. We herewith present the validation of previous work on the possibility to discriminate between eyes of healthy volunteers and eyes of patients with diabetic retinopathy resorting to a supervised classification procedure, the support vector machine (SVM) classifier, based solely on the statistics of the distribution of retinal human OCT data. For this purpose, we calculate the chance line and the statistical significance for the dependence between the supervised classification and their respective discrimination results. Furthermore, a genetic algorithm is used to find optimum kernel and regularization parameters for the radial basis function kernel of the SVM classifier. Achieved results strengthen the possibility that information on the health status of the blood-retinal barrier is encoded within the optical properties of the human retina. |
doi_str_mv | 10.1109/ENBENG.2012.6331373 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6331373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6331373</ieee_id><sourcerecordid>6331373</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6938aee02e8e68026d5aeb26ccc92e71d651cafdeedd3f91270a6fa8e9179aa3</originalsourceid><addsrcrecordid>eNo9UMtOwzAQNEJIQOkX9OIfSPDajR9HqEKLVLUHKq7V1t4oRm1SJUYof08QhTnMaGZXcxjGZiByAOEey81zuVnmUoDMtVKgjLpi9zDXRs0LWahrNnXG_vm5vWXTvv8QIywYreGOvb3jMQZMsW14W_FUE8fP1J7GxPMYqEmxiv7_TgP1_CummoeIB_p56kZu2jOmeuCHgW8Xuwd2U-Gxp-lFJ2z3Uu4Wq2y9Xb4untZZBFOkTDtlkUhIsqStkDoUSAepvfdOkoGgC_BYBaIQVOVAGoG6QksOjENUEzb7rY1EtD938YTdsL_MoL4BFMhSqw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Validation of the automatic identification of eyes with diabetic retinopathy by OCT</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Santos, T. ; Ribeiro, L. ; Lobo, C. ; Bernardes, R. ; Serranho, P.</creator><creatorcontrib>Santos, T. ; Ribeiro, L. ; Lobo, C. ; Bernardes, R. ; Serranho, P.</creatorcontrib><description>Optical coherence tomography (OCT) is becoming one of the most important imaging modalities in ophthalmology due to its noninvasiveness and resolution. Besides allowing the visualization the human retina structure in detail, it was recently proposed that OCT embeds functional information. Specifically, it was proposed that blood-retinal barrier status information is present within OCT data acquired from the human retina. We herewith present the validation of previous work on the possibility to discriminate between eyes of healthy volunteers and eyes of patients with diabetic retinopathy resorting to a supervised classification procedure, the support vector machine (SVM) classifier, based solely on the statistics of the distribution of retinal human OCT data. For this purpose, we calculate the chance line and the statistical significance for the dependence between the supervised classification and their respective discrimination results. Furthermore, a genetic algorithm is used to find optimum kernel and regularization parameters for the radial basis function kernel of the SVM classifier. Achieved results strengthen the possibility that information on the health status of the blood-retinal barrier is encoded within the optical properties of the human retina.</description><identifier>ISBN: 9781467345248</identifier><identifier>ISBN: 1467345245</identifier><identifier>EISBN: 1467345253</identifier><identifier>EISBN: 9781467345255</identifier><identifier>EISBN: 1467345261</identifier><identifier>EISBN: 9781467345262</identifier><identifier>DOI: 10.1109/ENBENG.2012.6331373</identifier><language>eng</language><publisher>IEEE</publisher><subject>Coherence ; Computer Aided Diagnosis ; Diabetes ; Humans ; Optical Coherence Tomography ; Retina ; Retinopathy ; Support vector machines ; Tomography</subject><ispartof>2012 IEEE 2nd Portuguese Meeting in Bioengineering (ENBENG), 2012, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6331373$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6331373$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Santos, T.</creatorcontrib><creatorcontrib>Ribeiro, L.</creatorcontrib><creatorcontrib>Lobo, C.</creatorcontrib><creatorcontrib>Bernardes, R.</creatorcontrib><creatorcontrib>Serranho, P.</creatorcontrib><title>Validation of the automatic identification of eyes with diabetic retinopathy by OCT</title><title>2012 IEEE 2nd Portuguese Meeting in Bioengineering (ENBENG)</title><addtitle>ENBENG</addtitle><description>Optical coherence tomography (OCT) is becoming one of the most important imaging modalities in ophthalmology due to its noninvasiveness and resolution. Besides allowing the visualization the human retina structure in detail, it was recently proposed that OCT embeds functional information. Specifically, it was proposed that blood-retinal barrier status information is present within OCT data acquired from the human retina. We herewith present the validation of previous work on the possibility to discriminate between eyes of healthy volunteers and eyes of patients with diabetic retinopathy resorting to a supervised classification procedure, the support vector machine (SVM) classifier, based solely on the statistics of the distribution of retinal human OCT data. For this purpose, we calculate the chance line and the statistical significance for the dependence between the supervised classification and their respective discrimination results. Furthermore, a genetic algorithm is used to find optimum kernel and regularization parameters for the radial basis function kernel of the SVM classifier. Achieved results strengthen the possibility that information on the health status of the blood-retinal barrier is encoded within the optical properties of the human retina.</description><subject>Coherence</subject><subject>Computer Aided Diagnosis</subject><subject>Diabetes</subject><subject>Humans</subject><subject>Optical Coherence Tomography</subject><subject>Retina</subject><subject>Retinopathy</subject><subject>Support vector machines</subject><subject>Tomography</subject><isbn>9781467345248</isbn><isbn>1467345245</isbn><isbn>1467345253</isbn><isbn>9781467345255</isbn><isbn>1467345261</isbn><isbn>9781467345262</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9UMtOwzAQNEJIQOkX9OIfSPDajR9HqEKLVLUHKq7V1t4oRm1SJUYof08QhTnMaGZXcxjGZiByAOEey81zuVnmUoDMtVKgjLpi9zDXRs0LWahrNnXG_vm5vWXTvv8QIywYreGOvb3jMQZMsW14W_FUE8fP1J7GxPMYqEmxiv7_TgP1_CummoeIB_p56kZu2jOmeuCHgW8Xuwd2U-Gxp-lFJ2z3Uu4Wq2y9Xb4untZZBFOkTDtlkUhIsqStkDoUSAepvfdOkoGgC_BYBaIQVOVAGoG6QksOjENUEzb7rY1EtD938YTdsL_MoL4BFMhSqw</recordid><startdate>201202</startdate><enddate>201202</enddate><creator>Santos, T.</creator><creator>Ribeiro, L.</creator><creator>Lobo, C.</creator><creator>Bernardes, R.</creator><creator>Serranho, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201202</creationdate><title>Validation of the automatic identification of eyes with diabetic retinopathy by OCT</title><author>Santos, T. ; Ribeiro, L. ; Lobo, C. ; Bernardes, R. ; Serranho, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6938aee02e8e68026d5aeb26ccc92e71d651cafdeedd3f91270a6fa8e9179aa3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Coherence</topic><topic>Computer Aided Diagnosis</topic><topic>Diabetes</topic><topic>Humans</topic><topic>Optical Coherence Tomography</topic><topic>Retina</topic><topic>Retinopathy</topic><topic>Support vector machines</topic><topic>Tomography</topic><toplevel>online_resources</toplevel><creatorcontrib>Santos, T.</creatorcontrib><creatorcontrib>Ribeiro, L.</creatorcontrib><creatorcontrib>Lobo, C.</creatorcontrib><creatorcontrib>Bernardes, R.</creatorcontrib><creatorcontrib>Serranho, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Santos, T.</au><au>Ribeiro, L.</au><au>Lobo, C.</au><au>Bernardes, R.</au><au>Serranho, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Validation of the automatic identification of eyes with diabetic retinopathy by OCT</atitle><btitle>2012 IEEE 2nd Portuguese Meeting in Bioengineering (ENBENG)</btitle><stitle>ENBENG</stitle><date>2012-02</date><risdate>2012</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><isbn>9781467345248</isbn><isbn>1467345245</isbn><eisbn>1467345253</eisbn><eisbn>9781467345255</eisbn><eisbn>1467345261</eisbn><eisbn>9781467345262</eisbn><abstract>Optical coherence tomography (OCT) is becoming one of the most important imaging modalities in ophthalmology due to its noninvasiveness and resolution. Besides allowing the visualization the human retina structure in detail, it was recently proposed that OCT embeds functional information. Specifically, it was proposed that blood-retinal barrier status information is present within OCT data acquired from the human retina. We herewith present the validation of previous work on the possibility to discriminate between eyes of healthy volunteers and eyes of patients with diabetic retinopathy resorting to a supervised classification procedure, the support vector machine (SVM) classifier, based solely on the statistics of the distribution of retinal human OCT data. For this purpose, we calculate the chance line and the statistical significance for the dependence between the supervised classification and their respective discrimination results. Furthermore, a genetic algorithm is used to find optimum kernel and regularization parameters for the radial basis function kernel of the SVM classifier. Achieved results strengthen the possibility that information on the health status of the blood-retinal barrier is encoded within the optical properties of the human retina.</abstract><pub>IEEE</pub><doi>10.1109/ENBENG.2012.6331373</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467345248 |
ispartof | 2012 IEEE 2nd Portuguese Meeting in Bioengineering (ENBENG), 2012, p.1-4 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6331373 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Coherence Computer Aided Diagnosis Diabetes Humans Optical Coherence Tomography Retina Retinopathy Support vector machines Tomography |
title | Validation of the automatic identification of eyes with diabetic retinopathy by OCT |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A02%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Validation%20of%20the%20automatic%20identification%20of%20eyes%20with%20diabetic%20retinopathy%20by%20OCT&rft.btitle=2012%20IEEE%202nd%20Portuguese%20Meeting%20in%20Bioengineering%20(ENBENG)&rft.au=Santos,%20T.&rft.date=2012-02&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.isbn=9781467345248&rft.isbn_list=1467345245&rft_id=info:doi/10.1109/ENBENG.2012.6331373&rft.eisbn=1467345253&rft.eisbn_list=9781467345255&rft.eisbn_list=1467345261&rft.eisbn_list=9781467345262&rft_dat=%3Cieee_6IE%3E6331373%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-6938aee02e8e68026d5aeb26ccc92e71d651cafdeedd3f91270a6fa8e9179aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6331373&rfr_iscdi=true |