Loading…

Validation of the automatic identification of eyes with diabetic retinopathy by OCT

Optical coherence tomography (OCT) is becoming one of the most important imaging modalities in ophthalmology due to its noninvasiveness and resolution. Besides allowing the visualization the human retina structure in detail, it was recently proposed that OCT embeds functional information. Specifical...

Full description

Saved in:
Bibliographic Details
Main Authors: Santos, T., Ribeiro, L., Lobo, C., Bernardes, R., Serranho, P.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Santos, T.
Ribeiro, L.
Lobo, C.
Bernardes, R.
Serranho, P.
description Optical coherence tomography (OCT) is becoming one of the most important imaging modalities in ophthalmology due to its noninvasiveness and resolution. Besides allowing the visualization the human retina structure in detail, it was recently proposed that OCT embeds functional information. Specifically, it was proposed that blood-retinal barrier status information is present within OCT data acquired from the human retina. We herewith present the validation of previous work on the possibility to discriminate between eyes of healthy volunteers and eyes of patients with diabetic retinopathy resorting to a supervised classification procedure, the support vector machine (SVM) classifier, based solely on the statistics of the distribution of retinal human OCT data. For this purpose, we calculate the chance line and the statistical significance for the dependence between the supervised classification and their respective discrimination results. Furthermore, a genetic algorithm is used to find optimum kernel and regularization parameters for the radial basis function kernel of the SVM classifier. Achieved results strengthen the possibility that information on the health status of the blood-retinal barrier is encoded within the optical properties of the human retina.
doi_str_mv 10.1109/ENBENG.2012.6331373
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6331373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6331373</ieee_id><sourcerecordid>6331373</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6938aee02e8e68026d5aeb26ccc92e71d651cafdeedd3f91270a6fa8e9179aa3</originalsourceid><addsrcrecordid>eNo9UMtOwzAQNEJIQOkX9OIfSPDajR9HqEKLVLUHKq7V1t4oRm1SJUYof08QhTnMaGZXcxjGZiByAOEey81zuVnmUoDMtVKgjLpi9zDXRs0LWahrNnXG_vm5vWXTvv8QIywYreGOvb3jMQZMsW14W_FUE8fP1J7GxPMYqEmxiv7_TgP1_CummoeIB_p56kZu2jOmeuCHgW8Xuwd2U-Gxp-lFJ2z3Uu4Wq2y9Xb4untZZBFOkTDtlkUhIsqStkDoUSAepvfdOkoGgC_BYBaIQVOVAGoG6QksOjENUEzb7rY1EtD938YTdsL_MoL4BFMhSqw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Validation of the automatic identification of eyes with diabetic retinopathy by OCT</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Santos, T. ; Ribeiro, L. ; Lobo, C. ; Bernardes, R. ; Serranho, P.</creator><creatorcontrib>Santos, T. ; Ribeiro, L. ; Lobo, C. ; Bernardes, R. ; Serranho, P.</creatorcontrib><description>Optical coherence tomography (OCT) is becoming one of the most important imaging modalities in ophthalmology due to its noninvasiveness and resolution. Besides allowing the visualization the human retina structure in detail, it was recently proposed that OCT embeds functional information. Specifically, it was proposed that blood-retinal barrier status information is present within OCT data acquired from the human retina. We herewith present the validation of previous work on the possibility to discriminate between eyes of healthy volunteers and eyes of patients with diabetic retinopathy resorting to a supervised classification procedure, the support vector machine (SVM) classifier, based solely on the statistics of the distribution of retinal human OCT data. For this purpose, we calculate the chance line and the statistical significance for the dependence between the supervised classification and their respective discrimination results. Furthermore, a genetic algorithm is used to find optimum kernel and regularization parameters for the radial basis function kernel of the SVM classifier. Achieved results strengthen the possibility that information on the health status of the blood-retinal barrier is encoded within the optical properties of the human retina.</description><identifier>ISBN: 9781467345248</identifier><identifier>ISBN: 1467345245</identifier><identifier>EISBN: 1467345253</identifier><identifier>EISBN: 9781467345255</identifier><identifier>EISBN: 1467345261</identifier><identifier>EISBN: 9781467345262</identifier><identifier>DOI: 10.1109/ENBENG.2012.6331373</identifier><language>eng</language><publisher>IEEE</publisher><subject>Coherence ; Computer Aided Diagnosis ; Diabetes ; Humans ; Optical Coherence Tomography ; Retina ; Retinopathy ; Support vector machines ; Tomography</subject><ispartof>2012 IEEE 2nd Portuguese Meeting in Bioengineering (ENBENG), 2012, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6331373$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6331373$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Santos, T.</creatorcontrib><creatorcontrib>Ribeiro, L.</creatorcontrib><creatorcontrib>Lobo, C.</creatorcontrib><creatorcontrib>Bernardes, R.</creatorcontrib><creatorcontrib>Serranho, P.</creatorcontrib><title>Validation of the automatic identification of eyes with diabetic retinopathy by OCT</title><title>2012 IEEE 2nd Portuguese Meeting in Bioengineering (ENBENG)</title><addtitle>ENBENG</addtitle><description>Optical coherence tomography (OCT) is becoming one of the most important imaging modalities in ophthalmology due to its noninvasiveness and resolution. Besides allowing the visualization the human retina structure in detail, it was recently proposed that OCT embeds functional information. Specifically, it was proposed that blood-retinal barrier status information is present within OCT data acquired from the human retina. We herewith present the validation of previous work on the possibility to discriminate between eyes of healthy volunteers and eyes of patients with diabetic retinopathy resorting to a supervised classification procedure, the support vector machine (SVM) classifier, based solely on the statistics of the distribution of retinal human OCT data. For this purpose, we calculate the chance line and the statistical significance for the dependence between the supervised classification and their respective discrimination results. Furthermore, a genetic algorithm is used to find optimum kernel and regularization parameters for the radial basis function kernel of the SVM classifier. Achieved results strengthen the possibility that information on the health status of the blood-retinal barrier is encoded within the optical properties of the human retina.</description><subject>Coherence</subject><subject>Computer Aided Diagnosis</subject><subject>Diabetes</subject><subject>Humans</subject><subject>Optical Coherence Tomography</subject><subject>Retina</subject><subject>Retinopathy</subject><subject>Support vector machines</subject><subject>Tomography</subject><isbn>9781467345248</isbn><isbn>1467345245</isbn><isbn>1467345253</isbn><isbn>9781467345255</isbn><isbn>1467345261</isbn><isbn>9781467345262</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9UMtOwzAQNEJIQOkX9OIfSPDajR9HqEKLVLUHKq7V1t4oRm1SJUYof08QhTnMaGZXcxjGZiByAOEey81zuVnmUoDMtVKgjLpi9zDXRs0LWahrNnXG_vm5vWXTvv8QIywYreGOvb3jMQZMsW14W_FUE8fP1J7GxPMYqEmxiv7_TgP1_CummoeIB_p56kZu2jOmeuCHgW8Xuwd2U-Gxp-lFJ2z3Uu4Wq2y9Xb4untZZBFOkTDtlkUhIsqStkDoUSAepvfdOkoGgC_BYBaIQVOVAGoG6QksOjENUEzb7rY1EtD938YTdsL_MoL4BFMhSqw</recordid><startdate>201202</startdate><enddate>201202</enddate><creator>Santos, T.</creator><creator>Ribeiro, L.</creator><creator>Lobo, C.</creator><creator>Bernardes, R.</creator><creator>Serranho, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201202</creationdate><title>Validation of the automatic identification of eyes with diabetic retinopathy by OCT</title><author>Santos, T. ; Ribeiro, L. ; Lobo, C. ; Bernardes, R. ; Serranho, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6938aee02e8e68026d5aeb26ccc92e71d651cafdeedd3f91270a6fa8e9179aa3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Coherence</topic><topic>Computer Aided Diagnosis</topic><topic>Diabetes</topic><topic>Humans</topic><topic>Optical Coherence Tomography</topic><topic>Retina</topic><topic>Retinopathy</topic><topic>Support vector machines</topic><topic>Tomography</topic><toplevel>online_resources</toplevel><creatorcontrib>Santos, T.</creatorcontrib><creatorcontrib>Ribeiro, L.</creatorcontrib><creatorcontrib>Lobo, C.</creatorcontrib><creatorcontrib>Bernardes, R.</creatorcontrib><creatorcontrib>Serranho, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Santos, T.</au><au>Ribeiro, L.</au><au>Lobo, C.</au><au>Bernardes, R.</au><au>Serranho, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Validation of the automatic identification of eyes with diabetic retinopathy by OCT</atitle><btitle>2012 IEEE 2nd Portuguese Meeting in Bioengineering (ENBENG)</btitle><stitle>ENBENG</stitle><date>2012-02</date><risdate>2012</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><isbn>9781467345248</isbn><isbn>1467345245</isbn><eisbn>1467345253</eisbn><eisbn>9781467345255</eisbn><eisbn>1467345261</eisbn><eisbn>9781467345262</eisbn><abstract>Optical coherence tomography (OCT) is becoming one of the most important imaging modalities in ophthalmology due to its noninvasiveness and resolution. Besides allowing the visualization the human retina structure in detail, it was recently proposed that OCT embeds functional information. Specifically, it was proposed that blood-retinal barrier status information is present within OCT data acquired from the human retina. We herewith present the validation of previous work on the possibility to discriminate between eyes of healthy volunteers and eyes of patients with diabetic retinopathy resorting to a supervised classification procedure, the support vector machine (SVM) classifier, based solely on the statistics of the distribution of retinal human OCT data. For this purpose, we calculate the chance line and the statistical significance for the dependence between the supervised classification and their respective discrimination results. Furthermore, a genetic algorithm is used to find optimum kernel and regularization parameters for the radial basis function kernel of the SVM classifier. Achieved results strengthen the possibility that information on the health status of the blood-retinal barrier is encoded within the optical properties of the human retina.</abstract><pub>IEEE</pub><doi>10.1109/ENBENG.2012.6331373</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467345248
ispartof 2012 IEEE 2nd Portuguese Meeting in Bioengineering (ENBENG), 2012, p.1-4
issn
language eng
recordid cdi_ieee_primary_6331373
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Coherence
Computer Aided Diagnosis
Diabetes
Humans
Optical Coherence Tomography
Retina
Retinopathy
Support vector machines
Tomography
title Validation of the automatic identification of eyes with diabetic retinopathy by OCT
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A02%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Validation%20of%20the%20automatic%20identification%20of%20eyes%20with%20diabetic%20retinopathy%20by%20OCT&rft.btitle=2012%20IEEE%202nd%20Portuguese%20Meeting%20in%20Bioengineering%20(ENBENG)&rft.au=Santos,%20T.&rft.date=2012-02&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.isbn=9781467345248&rft.isbn_list=1467345245&rft_id=info:doi/10.1109/ENBENG.2012.6331373&rft.eisbn=1467345253&rft.eisbn_list=9781467345255&rft.eisbn_list=1467345261&rft.eisbn_list=9781467345262&rft_dat=%3Cieee_6IE%3E6331373%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-6938aee02e8e68026d5aeb26ccc92e71d651cafdeedd3f91270a6fa8e9179aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6331373&rfr_iscdi=true