Loading…
Shape model fitting algorithm without point correspondence
In this paper, we present a Mean Shift algorithm that does not require point correspondence to fit shape models. The observed data and the shape model are represented as mixtures of Gaussians. Using a Bayesian framework, we propose to model the likelihood using the Euclidean distance between the two...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we present a Mean Shift algorithm that does not require point correspondence to fit shape models. The observed data and the shape model are represented as mixtures of Gaussians. Using a Bayesian framework, we propose to model the likelihood using the Euclidean distance between the two Gaussian mixture density functions while the latent variables are modelled with a Gaussian prior. We show the performance of our MS algorithm for fitting a 2D hand model and a 3D Morphable Model of faces to point clouds. |
---|---|
ISSN: | 2219-5491 2219-5491 |